Review for CMSC 452 Final: Grammars

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Context Free Languages

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Context Free Grammar for $\{a^m b^n : m > n\}$

- イロト イ理ト イヨト イヨト ヨー のへぐ

Context Free Grammar for $\{a^m b^n : m > n\}$

S
ightarrow AT T
ightarrow aTb T
ightarrow e A
ightarrow AaA
ightarrow a

Context Free Grammars

Def A **Context Free Grammar** is a tuple $G = (N, \Sigma, R, S)$

- ► *N* is a finite set of **nonterminals**.
- Σ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- $R \subseteq N \times (N \cup \Sigma)^*$ and are called **Rules**.
- $S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

$$\blacktriangleright A \Rightarrow a$$

$$\blacktriangleright A \Rightarrow aB$$

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

$$\blacktriangleright A \Rightarrow a$$

$$\blacktriangleright A \Rightarrow aB$$

Then, if w is string of **non-terminals only**, we define L(G) by:

$$L(G) = \{w \in \Sigma^* \mid S \Rightarrow w\}$$

*ロト *目 * * * * * * * * * * * * * *

1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL. 2) $\{a^{n^2} : n \in \mathbb{N}\}$ is NOT a CFL.

{aⁿbⁿcⁿ : n ∈ N} is NOT a CFL.
 {a^{n²} : n ∈ N} is NOT a CFL.
 If L ⊆ a^{*} and L is not regular than L is not a CFL.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL's (we omit)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Closure Properties and REG CFL

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

1. CFL's closed under UNION-easy.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

3. CFL's closed under *-easy.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.
- 3. CFL's closed under *-easy.
- 4. CFL's closed under INTER-FALSE: $a^n b^n c^* \cap a^* b^n c^n = a^n b^n c^n$.

- 1. CFL's closed under UNION-easy.
- 2. CFL's closed under CONCAT-easy.
- 3. CFL's closed under *-easy.
- 4. CFL's closed under INTER-FALSE: $a^n b^n c^* \cap a^* b^n c^n = a^n b^n c^n$.
- CFL's closed under COMPLEMENTATION: FALSE: aⁿbⁿcⁿ is CFL.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

REG contained in CFL

For every regex α , $L(\alpha)$ is a CFL.

REG contained in CFL

For every regex α , $L(\alpha)$ is a CFL. Prove by ind on the length of α .

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL. Prove by ind on the length of α . We omit from this review.

Examples of CFL's and Size of CFG's

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

(ロト (個) (E) (E) (E) (E) のへの

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals). 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
- 3) $S \rightarrow e$ (where S is the start state).

All CFL's are in Chomsky Normal Form. |G| is the number of rules.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All CFL's are in Chomsky Normal Form. |G| is the number of rules. 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

All CFL's are in Chomsky Normal Form. |G| is the number of rules.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1.
$$(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$$

2.
$$(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$$

All CFL's are in Chomsky Normal Form. |G| is the number of rules.

- 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$
- 2. $(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$
- 3. Does there exist a string w such that for all G such that $L(G) = \{w\}, |G|$ is large?

All CFL's are in Chomsky Normal Form. |G| is the number of rules.

- 1. $(\forall w \in \{a, b\}^n)(\exists G)[L(G) = \{w\} \land |G| = n].$
- 2. $(\forall n \in \mathbb{N})(\exists G)[L(G) = \{a^n\} \land |G| = O(\log n)].$
- Does there exist a string w such that for all G such that L(G) = {w}, |G| is large?
 Yes: Let w be Kolm. Random.

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

Let *L* be a CFL. Let *G* be the Chomsky Normal Form CFG for *L*. $w = \sigma_1 \cdots \sigma_n$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Let *L* be a CFL. Let *G* be the Chomsky Normal Form CFG for *L*. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$. For $i \leq j$ let

$$\operatorname{GEN}[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let *L* be a CFL. Let *G* be the Chomsky Normal Form CFG for *L*. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$. For $i \leq j$ let

$$\operatorname{GEN}[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

Find GEN[i, j] with Dynamic Programming.