## BILL AND NATHAN RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

#### BILL AND NATHAN RECORD LECTURE!!!

# FINAL IS FRIDAY May 17 10:30AM-12:30PM

ション ふゆ アメリア メリア しょうくしゃ

# FILL OUT COURSE EVALS for ALL YOUR COURSES!!!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

# **Review for Final**

<ロト (個) (目) (目) (日) (の)</p>



 Begin Final Tuesday May 17, 10:30PM-12:30PM in CSI 3117. (IF this is a problem for you contact me ASAP!!)

#### **Rules**

- Begin Final Tuesday May 17, 10:30PM-12:30PM in CSI 3117. (IF this is a problem for you contact me ASAP!!)
- 2. **Resources** You can bring two sheets of notes and use both sides.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

#### **Rules**

- Begin Final Tuesday May 17, 10:30PM-12:30PM in CSI 3117. (IF this is a problem for you contact me ASAP!!)
- 2. **Resources** You can bring two sheets of notes and use both sides.
- 3. **Warning** Cramming the entire course on to those pages does not work.

#### **Rules**

- Begin Final Tuesday May 17, 10:30PM-12:30PM in CSI 3117. (IF this is a problem for you contact me ASAP!!)
- 2. **Resources** You can bring two sheets of notes and use both sides.
- 3. **Warning** Cramming the entire course on to those pages does not work.

4. Scope of the Exam: My Slides and the HW.

- - - ・ロト・(型ト・(ヨト・(ヨト・)の(の)

1. For this review we omit definitions and conventions.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

- 1. For this review we omit definitions and conventions.
- 2. There is a JAVA program for function *f* iff there is a TM that computes *f*.

(ロト (個) (E) (E) (E) (E) のへの

- 1. For this review we omit definitions and conventions.
- 2. There is a JAVA program for function *f* iff there is a TM that computes *f*.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

3. Everything computable can be done by a TM.

#### **Decidable Sets**

**Def** A set A is DECIDABLE if there is a Turing Machine M such that

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

**Def** A set A is DECIDABLE if there is a Turing Machine M such that

 $x \in A \rightarrow M(x) = Y$ 



**Def** A set A is DECIDABLE if there is a Turing Machine M such that

$$x \in A \to M(x) = Y$$

$$x \notin A \to M(x) = N$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- \* ロ > \* 週 > \* 注 > \* 注 > ・ 注 - の < @

1. All theories have the usual logical symbols, a domain of discourse for the quantifiers, and Additional Symbols.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. All theories have the usual logical symbols, a domain of discourse for the quantifiers, and Additional Symbols.
- 2. Sentences are combos of Atomic Fmls using ∧, ∨, ¬, ∃ that have all variables quantified over.

- 1. All theories have the usual logical symbols, a domain of discourse for the quantifiers, and Additional Symbols.
- 2. Sentences are combos of Atomic Fmls using ∧, ∨, ¬, ∃ that have all variables quantified over.

3. Hence sentences are either TRUE or FALSE.

- 1. All theories have the usual logical symbols, a domain of discourse for the quantifiers, and Additional Symbols.
- Sentences are combos of Atomic Fmls using ∧, ∨, ¬, ∃ that have all variables quantified over.

- 3. Hence sentences are either TRUE or FALSE.
- 4. Our main question will be Is this theory decidable?

・ロト・個ト・ヨト・ヨト ヨー りへぐ

 Variables x, y, z range over N, X, Y, Z range over finite subsets of N.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Variables x, y, z range over N, X, Y, Z range over finite subsets of N.
- 2. Symbols: <,  $\in$ ,  $\equiv$  (mod ) (usual meaning), S (meaning S(x) = x + 1), = (for numbers and sets).

ション ふゆ アメリア メリア しょうくしゃ

- Variables x, y, z range over N, X, Y, Z range over finite subsets of N.
- 2. Symbols: <,  $\in$ ,  $\equiv$  (mod ) (usual meaning), S (meaning S(x) = x + 1), = (for numbers and sets).
- 3. Define atomic formulas, formulas, and sentences in the usual way.

#### **TRUE Sets**

# **Def** If $\phi(x_1, \ldots, x_n, X_1, \ldots, X_m)$ is a WS1S Formula then $TRUE(\phi)$ is the set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

#### **TRUE Sets**

# **Def** If $\phi(x_1, \ldots, x_n, X_1, \ldots, X_m)$ is a WS1S Formula then $TRUE(\phi)$ is the set

$$\{(a_1,\ldots,a_n,A_1,\ldots,A_m) \mid \phi(a_1,\ldots,a_n,A_1,\ldots,A_m) = T\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

# **KEY THEOREM**

**Thm** For all WS1S formulas  $\phi$  the set  $TRUE_{\phi}$  is regular.

**Thm** For all WS1S formulas  $\phi$  the set  $TRUE_{\phi}$  is regular.

Need to clarify representation and the define stupid states to make all of this work.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

**Thm** For all WS1S formulas  $\phi$  the set  $TRUE_{\phi}$  is regular.

Need to clarify representation and the define stupid states to make all of this work.

We prove this by induction on the formation of a formula. If you prefer- induction on the LENGTH of a formula.

# **DECIDABILITY OF WS1S**

# Thm: WS1S is Decidable. **Proof:**

1. Given a SENTENCE in WS1S put it into the form

 $(Q_1X_1)\cdots(Q_nX_n)(Q_{n+1}x_1)\cdots(Q_{n+m}x_m)[\phi(x_1,\ldots,x_m,X_1,\ldots,X_n)]$ 

- 2. Assume  $Q_1 = \exists$ . (If not then negate and negate answer.)
- 3. View as  $(\exists X)[\phi(X)]$ , a FORMULA with ONE free var.
- **4**. Construct DFA *M* for  $\{X \mid \phi(X) \text{ is true}\}$ .
- 5. Test if  $L(M) = \emptyset$ .
- 6. If  $L(M) \neq \emptyset$  then  $(\exists X)[\phi(X)]$  is TRUE. If  $L(M) = \emptyset$  then  $(\exists X)[\phi(X)]$  is FALSE.

・ロト・個ト・モト・モト・ ヨー うへぐ

**1**. Variables x, y, z range over  $\mathbb{Q}$ .

- 1. Variables x, y, z range over  $\mathbb{Q}$ .
- 2. Symbols: <, = (usual meaning)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 1. Variables x, y, z range over  $\mathbb{Q}$ .
- 2. Symbols: <, = (usual meaning)
- 3. Atomic formulas, formulas, sentences, defined in usual way.

#### Lemma on Quantifier Elimination

**Lemma**  $\exists$  an algorithm that will, given a sentence of the form

$$(Q_1x_1)\cdots(Q_{n-1}x_{n-1})(\exists x_n)[\phi(x_1,\ldots,x_n)]$$

(where the  $Q_i$  are quantifiers) return a sentence of the form

$$(Q_1x_1)\cdots(Q_{n-1}x_{n-1})[\phi'(x_1,\ldots,x_{n-1})]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

# $(\mathbb{Q}, <)$ is Decidable: The Algorithm

・ロト・西ト・ヨト・ヨー うへぐ

# $(\mathbb{Q}, <)$ is Decidable: The Algorithm

Algorithm

- イロト イロト イヨト イヨト ヨー のへぐ

# $(\mathbb{Q}, <)$ is Decidable: The Algorithm

#### Algorithm

1.  $(Q_1x_1)\cdots(Q_nx_n)[\phi(x_1,\ldots,x_n)]$ . Replace  $\forall$  with  $\neg \exists \neg$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

# $(\mathbb{Q}, <)$ is Decidable: The Algorithm

#### Algorithm

- 1.  $(Q_1x_1)\cdots(Q_nx_n)[\phi(x_1,\ldots,x_n)]$ . Replace  $\forall$  with  $\neg \exists \neg$ .
- Apply the Quant Elim Lemma over and over again until either you end up with a TRUE or a FALSE or a sentence with one variable whose truth will be easily discerned.

# Undecidability

・ロト・西ト・ヨト・ヨー うへぐ

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

#### **Notation** $M_{e,s}(d)$ is the result of running $M_e(d)$ for s steps.

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

#### **Notation** $M_{e,s}(d)$ is the result of running $M_e(d)$ for s steps. $M_e(d) \downarrow$ means $M_e(d)$ halts.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

**Notation**  $M_{e,s}(d)$  is the result of running  $M_e(d)$  for *s* steps.  $M_e(d) \downarrow$  means  $M_e(d)$  halts.  $M_e(d) \uparrow$  means  $M_e(d)$  does not halts.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

**Notation**  $M_{e,s}(d)$  is the result of running  $M_e(d)$  for *s* steps.  $M_e(d) \downarrow$  means  $M_e(d)$  halts.  $M_e(d) \uparrow$  means  $M_e(d)$  does not halts.  $M_{e,s}(d) \downarrow$  means  $M_e(d)$  halts within *s* steps.

**Notation**  $M_{e,s}(d)$  is the result of running  $M_e(d)$  for s steps.  $M_e(d) \downarrow$  means  $M_e(d)$  halts.  $M_e(d) \uparrow$  means  $M_e(d)$  does not halts.  $M_{e,s}(d) \downarrow$  means  $M_e(d)$  halts within s steps.  $M_{e,s}(d) \downarrow = z$  means  $M_e(d)$  halts within s steps and outputs z.

**Notation**  $M_{e,s}(d)$  is the result of running  $M_e(d)$  for s steps.  $M_e(d) \downarrow$  means  $M_e(d)$  halts.  $M_e(d) \uparrow$  means  $M_e(d)$  does not halts.  $M_{e,s}(d) \downarrow$  means  $M_e(d)$  halts within s steps.  $M_{e,s}(d) \downarrow = z$  means  $M_e(d)$  halts within s steps and outputs z.  $M_{e,s}(d) \uparrow$  means  $M_e(d)$  has not halted within s steps.

**Notation**  $M_{e,s}(d)$  is the result of running  $M_e(d)$  for s steps.  $M_e(d) \downarrow$  means  $M_e(d)$  halts.  $M_e(d) \uparrow$  means  $M_e(d)$  does not halts.  $M_{e,s}(d) \downarrow$  means  $M_e(d)$  halts within s steps.  $M_{e,s}(d) \downarrow = z$  means  $M_e(d)$  halts within s steps and outputs z.  $M_{e,s}(d) \uparrow$  means  $M_e(d)$  has not halted within s steps.

#### **Noncomputable Sets**

Are there any noncomputable sets?

- 1. Yes—ALL SETS: uncountable. DEC Sets: countable, hence there exists an uncountable number of noncomputable sets.
- 2. YES—HALT is undecidable, and once you have that you have many other sets undec.
- YES—the problem of telling if a p ∈ Z[x<sub>1</sub>,..., x<sub>n</sub>] has an int solution is undecidable.
- 4. YES—there are other natural problems that are undecidable.

ション ふゆ アメリア メリア しょうくしゃ

#### The HALTING Problem

Def The HALTING set is the set

 $HALT = \{(e, d) \mid M_e(d) \text{ halts } \}.$ 



#### The HALTING Problem

#### Def The HALTING set is the set

$$HALT = \{(e, d) \mid M_e(d) \text{ halts }\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

#### Thm HALT is not computable.

# **Def** $A \in \Sigma_1$ if there exists decidable B such that

$$A = \{x : (\exists y) [ (x, y) \in B] \}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

# Def $A \in \Sigma_1$ if there exists decidable B such that $A = \{x : (\exists y) [(x, y) \in B]\}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Similar to NP.

**Def** *B* is always a decidable set.

**Def** B is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y) [(x, y) \in B]\}.$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

**Def** *B* is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y)[(x, y) \in B]\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$ .

**Def** *B* is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y)[(x, y) \in B]\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$ .  $A \in \Pi_2$  if  $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$ . :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

**Def** *B* is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y)[(x, y) \in B]\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$ .  $A \in \Pi_2$  if  $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$ . :  $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Def *B* is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y)[(x, y) \in B]\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2)[(x, y_1, y_2) \in B]\}$ .  $A \in \Pi_2$  if  $A = \{x : (\forall y_1)(\exists y_2)[(x, y_1, y_2) \in B]\}$ . :  $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2$ . Known:  $TOT \notin \Sigma_1 \cup \Pi_1$ .

**Def** B is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y) | (x, y) \in B\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2) | (x, y_1, y_2) \in B]\}.$  $A \in \Pi_2$  if  $A = \{x : (\forall y_1)(\exists y_2) | (x, y_1, y_2) \in B]\}.$ :  $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2.$ Known:  $TOT \notin \Sigma_1 \cup \Pi_1$ . Known:  $\Sigma_1 \subset \Sigma_2 \subset \Sigma_3 \cdots$  $\Pi_1 \subset \Pi_2 \subset \Pi_3 \cdots$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

**Def** B is always a decidable set.  $A \in \Pi_1$  if  $A = \{x : (\forall y) | (x, y) \in B\}$ .  $A \in \Sigma_2$  if  $A = \{x : (\exists y_1)(\forall y_2) | (x, y_1, y_2) \in B]\}.$  $A \in \Pi_2$  if  $A = \{x : (\forall y_1)(\exists y_2) | (x, y_1, y_2) \in B]\}.$ :  $TOT = \{x : (\forall y)(\exists s)[M_{x,s}(y) \downarrow]\} \in \Pi_2.$ Known:  $TOT \notin \Sigma_1 \cup \Pi_1$ . Known:  $\Sigma_1 \subset \Sigma_2 \subset \Sigma_3 \cdots$  $\Pi_1 \subset \Pi_2 \subset \Pi_3 \cdots$ TOT is **harder** than HALT.

・ロト・西・・日・・日・・日・

# Kolmogorov Complexity

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Def

(4日) (個) (主) (主) (主) の(の)

#### Def

1. If  $x \in \{0,1\}^n$  then C(x) is the length of the shortest TM that, on input *e*, prints out *x*. Note that  $C(x) \le n + O(1)$ .

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### Def

1. If  $x \in \{0,1\}^n$  then C(x) is the length of the shortest TM that, on input *e*, prints out *x*. Note that  $C(x) \le n + O(1)$ .

ション ふゆ アメリア メリア しょうくしゃ

2. A string is **Kolmogorov random** if  $C(x) \ge n$ .

#### Def

1. If  $x \in \{0,1\}^n$  then C(x) is the length of the shortest TM that, on input *e*, prints out *x*. Note that  $C(x) \le n + O(1)$ .

ション ふゆ アメリア メリア しょうくしゃ

- 2. A string is **Kolmogorov random** if  $C(x) \ge n$ .
- **Note** Machine Ind up to additive O(1).

#### Do Kolm-Random Strings Exist?

Is there a string of length *n* that has  $C(x) \ge n$ ?

YES- there are more Strings of length *n* then TMs of length  $\leq n - 1$ .

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Kolm Random Strings were used for:



Kolm Random Strings were used for:

1. Alternative way to show langs are regular (we did this).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Kolm Random Strings were used for:

- 1. Alternative way to show langs are regular (we did this).
- 2. Gave a string w such that any CFG G with  $L(G) = \{w\}$  is large. (this was HW).

Kolm Random Strings were used for:

- 1. Alternative way to show langs are regular (we did this).
- Gave a string w such that any CFG G with L(G) = {w} is large. (this was HW).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3. Avg case analysis (we did not do this).

Kolm Random Strings were used for:

- 1. Alternative way to show langs are regular (we did this).
- Gave a string w such that any CFG G with L(G) = {w} is large. (this was HW).
- 3. Avg case analysis (we did not do this).
- 4. Lower bounds for a variety of models of computation (we did not do this).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

### BILL AND NATHAN RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

#### BILL AND NATHAN RECORD LECTURE!!!

FINAL IS THURSDAY May 17 10:30PM-2:30PM

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

# FILL OUT COURSE EVALS for ALL YOUR COURSES!!!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @