Review for CMSC 452 Final: P and NP

Turing Machines Def

We will not define Turing Machine until we need to (after midterm).

Here is all you need to know:

Turing Machines Def

We will not define Turing Machine until we need to (after midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

Turing Machines Def

We will not define Turing Machine until we need to (after midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.
2. Turing machines compute with discrete steps so one can talk about how many steps a computation takes.

Turing Machines Def

We will not define Turing Machine until we need to (after midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.
2. Turing machines compute with discrete steps so one can talk about how many steps a computation takes.
3. There are many different models of computation. They are all equivalent to Turing machines. And better- they are all equivalent within poly time.

Polynomial Time and Other Classes

Def

Polynomial Time and Other Classes

Def

1. $\mathrm{P}=\operatorname{DTIME}\left(n^{O(1)}\right)$.

Polynomial Time and Other Classes

Def

1. $\mathrm{P}=\mathrm{DTIME}\left(n^{O(1)}\right)$.
2. $\operatorname{EXP}=\operatorname{DTIME}\left(2^{n^{O(1)}}\right)$.

Polynomial Time and Other Classes

Def

1. $\mathrm{P}=\mathrm{DTIME}\left(n^{O(1)}\right)$.
2. $\operatorname{EXP}=\operatorname{DTIME}\left(2^{n^{O(1)}}\right)$.
3. PF is the set of a functions computable in poly time.

Polynomial Time and Other Classes

Def

1. $\mathrm{P}=\mathrm{DTIME}\left(n^{O(1)}\right)$.
2. $\operatorname{EXP}=\operatorname{DTIME}\left(2^{n^{O(1)}}\right)$.
3. PF is the set of a functions computable in poly time.

These definitions are model independent.

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

$$
3 \mathrm{SAT}=\{\phi:(\exists \vec{b})[\phi(\vec{b})=T]\}
$$

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

$$
3 \mathrm{SAT}=\{\phi:(\exists \vec{b})[\phi(\vec{b})=T]\}
$$

$$
\text { HAM }=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n} \text { is a Ham Cycle }\right]\right\}
$$

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

$$
3 \mathrm{SAT}=\{\phi:(\exists \vec{b})[\phi(\vec{b})=T]\}
$$

HAM $=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n}\right.\right.$ is a Ham Cycle $\left.]\right\}$.
$\mathrm{EUL}=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n}\right.\right.$ is an Eul Cycle $\left.]\right\}$.

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

$$
3 \mathrm{SAT}=\{\phi:(\exists \vec{b})[\phi(\vec{b})=T]\}
$$

HAM $=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n}\right.\right.$ is a Ham Cycle $\left.]\right\}$.
$\mathrm{EUL}=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n}\right.\right.$ is an Eul Cycle $\left.]\right\}$.

$$
\mathrm{CLIQ}=\left\{(G, k):\left(\exists v_{1}, \ldots, v_{k}\right)\left[v_{1}, \ldots, v_{k} \text { are a Clique }\right]\right\} .
$$

3SAT, HAM, EUL, CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

$$
3 \mathrm{SAT}=\{\phi:(\exists \vec{b})[\phi(\vec{b})=T]\}
$$

$$
\operatorname{HAM}=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n} \text { is a Ham Cycle }\right]\right\} .
$$

$$
\mathrm{EUL}=\left\{G:\left(\exists v_{1}, \ldots, v_{n}\right)\left[v_{1}, \ldots, v_{n} \text { is an Eul Cycle }\right]\right\}
$$

$$
\mathrm{CLIQ}=\left\{(G, k):\left(\exists v_{1}, \ldots, v_{k}\right)\left[v_{1}, \ldots, v_{k} \text { are a Clique }\right]\right\} .
$$

For the above sets: If x is a member then there is a short verifiable witness of this.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\} .
$$

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}
$$

Intuition. Let $A \in \mathrm{NP}$.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}
$$

Intuition. Let $A \in$ NP.

- If $x \in A$ then there is a SHORT (poly in $|x|$) proof of this fact, namely y, such that x can be VERIFIED in poly time.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}
$$

Intuition. Let $A \in \mathrm{NP}$.

- If $x \in A$ then there is a SHORT (poly in $|x|$) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that $x \in A$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.

NP

Def A is in NP if there exists a set $B \in \mathrm{P}$ and a polynomial p such that

$$
A=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}
$$

Intuition. Let $A \in \mathrm{NP}$.

- If $x \in A$ then there is a SHORT (poly in $|x|$) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that $x \in A$, I could give you y. You can verify $(x, y) \in B$ easily and be convinced.
- If $x \notin A$ then there is NO proof that $x \in A$.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Reductions and Cook-Levin

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f :

$$
x \in X \text { iff } f(x) \in Y
$$

Reductions and Cook-Levin

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f :

$$
x \in X \text { iff } f(x) \in Y
$$

Def A set Y is NP-complete (NPC) if the following hold:

- $Y \in N P$
- If $X \in$ NP then $X \leq Y$.

Reductions and Cook-Levin

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f :

$$
x \in X \text { iff } f(x) \in Y
$$

Def A set Y is NP-complete (NPC) if the following hold:

- $Y \in N P$
- If $X \in$ NP then $X \leq Y$.

Cook-Levin Theorem 3SAT is NP-complete.

Reductions and Cook-Levin

Def Let X, Y be sets. $X \leq Y$ means there is a poly-time function f :

$$
x \in X \text { iff } f(x) \in Y
$$

Def A set Y is NP-complete (NPC) if the following hold:

- $Y \in \mathrm{NP}$
- If $X \in$ NP then $X \leq Y$.

Cook-Levin Theorem 3SAT is NP-complete.
Since then thousands of problems have been shown NP-complete.

SAT, HAM, CLIQ, 3COL Walk into a Bar

SAT, HAM, CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

SAT, HAM, CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.
2. IS is NP-complete. We proved this by showing 3 SAT \leq IS.

SAT, HAM, CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.
2. IS is NP-complete. We proved this by showing 3SAT \leq IS.
3. 3COL is NP-complete. We proved this.

SAT, HAM, CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.
2. IS is NP-complete. We proved this by showing 3 SAT \leq IS.
3. 3COL is NP-complete. We proved this.
4. HAM is NP-complete. Just take my word for it.

Closure of \mathbf{P}
4ロ 4句 4 三

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

1. $L_{1} \cup L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

1. $L_{1} \cup L_{2} \in P$. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in P$. EASY. Uses polys closed under addition.

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

1. $L_{1} \cup L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{P}$. EASY.

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

1. $L_{1} \cup L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{P}$. EASY.
4. $L_{1} L_{2} \in \mathrm{P}$. EASY. Uses $p(n)$ poly then $n p(n)$ poly.

Closure Properties of \mathbf{P}

Assume $L_{1}, L_{2} \in \mathrm{P}$.

1. $L_{1} \cup L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in \mathrm{P}$. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{P}$. EASY.
4. $L_{1} L_{2} \in \mathrm{P}$. EASY. Uses $p(n)$ poly then $n p(n)$ poly.
5. $L_{1}^{*} \in \mathrm{P}$. HARDER- Used Dyna Programmming.

Closure of NP

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

1. $L_{1} \cup L_{2} \in$ NP. EASY. Uses polys closed under addition.

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

1. $L_{1} \cup L_{2} \in$ NP. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in$ NP. EASY. Uses polys closed under addition.

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

1. $L_{1} \cup L_{2} \in$ NP. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in$ NP. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{NP}$. THOUGHT TO BE FALSE.

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

1. $L_{1} \cup L_{2} \in$ NP. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in$ NP. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{NP}$. THOUGHT TO BE FALSE.
4. $L_{1} L_{2} \in$ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume $L_{1}, L_{2} \in \mathrm{NP}$.

1. $L_{1} \cup L_{2} \in$ NP. EASY. Uses polys closed under addition.
2. $L_{1} \cap L_{2} \in$ NP. EASY. Uses polys closed under addition.
3. $\overline{L_{1}} \in \mathrm{NP}$. THOUGHT TO BE FALSE.
4. $L_{1} L_{2} \in$ NP. EASY. Uses polys closed under addition and mult.
5. $L_{1}^{*} \in$ NP. EASY. Uses polys closed under addition and mult.
