
Review for CMSC 452
Final: P and NP

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Turing Machines Def

We will not define Turing Machine until we need to (after
midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.

3. There are many different models of computation. They are all
equivalent to Turing machines. And better- they are all
equivalent within poly time.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

Polynomial Time and Other Classes

Def

1. P = DTIME(nO(1)).

2. EXP = DTIME(2n
O(1)

).

3. PF is the set of a functions computable in poly time.

These definitions are model independent.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

For the above sets: If x is a member then there is a short verifiable
witness of this.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

▶ So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Reductions and Cook-Levin

Def Let X ,Y be sets. X ≤ Y means there is a poly-time function
f :

x ∈ X iff f (x) ∈ Y .

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Reductions and Cook-Levin

Def Let X ,Y be sets. X ≤ Y means there is a poly-time function
f :

x ∈ X iff f (x) ∈ Y .

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Reductions and Cook-Levin

Def Let X ,Y be sets. X ≤ Y means there is a poly-time function
f :

x ∈ X iff f (x) ∈ Y .

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

Reductions and Cook-Levin

Def Let X ,Y be sets. X ≤ Y means there is a poly-time function
f :

x ∈ X iff f (x) ∈ Y .

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. IS is NP-complete. We proved this by showing 3SAT ≤ IS.

3. 3COL is NP-complete. We proved this.

4. HAM is NP-complete. Just take my word for it.

Closure of P

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure Properties of P

Assume L1, L2 ∈ P.

1. L1 ∪ L2 ∈ P. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ P. EASY. Uses polys closed under addition.

3. L1 ∈ P. EASY.

4. L1L2 ∈ P. EASY. Uses p(n) poly then np(n) poly.

5. L∗1 ∈ P. HARDER- Used Dyna Programmming.

Closure of NP

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

Closure Properties of NP

Assume L1, L2 ∈ NP.

1. L1 ∪ L2 ∈ NP. EASY. Uses polys closed under addition.

2. L1 ∩ L2 ∈ NP. EASY. Uses polys closed under addition.

3. L1 ∈ NP. THOUGHT TO BE FALSE.

4. L1L2 ∈ NP. EASY. Uses polys closed under addition and
mult.

5. L∗1 ∈ NP. EASY. Uses polys closed under addition and mult.

