Review for CMSC 452 Final

Deterministic Finite Automata (DFA)

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\right\}$

Nondeterministic Finite Automata (NFA)

NFA's Intuitively

1. An NFA is a DFA that can guess.
2. NFAs do not really exist.
3. Good for U since can guess which one.
4. An NFA accepts iff SOME guess accepts.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. Pf Sketch L is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where

1. Get rid of e-transitions using reachability.
2. Get rid of non-determinism by using power sets. Possibly 2^{n} blowup.

Regular Expressions

Examples

1. $b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}$
2. $b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}$
3. $\left(b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}\right) \cup\left(b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}\right)$

DFA $=$ NFA $=$ REGEX

NFA \subseteq DFA: Use Power Set Construction. Exp Blowup.

DFA $=$ NFA $=$ REGEX

NFA \subseteq DFA: Use Power Set Construction. Exp Blowup.
$\mathrm{DFA} \subseteq \mathrm{REGEX}:$ Use $R(i, j, k)$ construction.

DFA $=$ NFA $=$ REGEX

NFA \subseteq DFA: Use Power Set Construction. Exp Blowup.
$\mathrm{DFA} \subseteq \mathrm{REGEX}:$ Use $R(i, j, k)$ construction.
REGEX \subseteq NFA: Induction on formation of regex. Linear.

Closure Properties

[^0]
Summary of Proofs of Closure Properties

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cup L_{2}$ for regex.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cup L_{2}$ for regex.
Swap means swapping final and non-final states.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cup L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdot L_{2}$ for NFAs.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cup L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdot L_{2}$ for NFAs.
\mathbf{X} means hard to prove, e.g., \bar{L} for NFA.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cup L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdot L_{2}$ for NFAs.
X means hard to prove, e.g., \bar{L} for NFA.

Property	DFA	NFA	regex
$L_{1} \cup L_{2}$	Prod	e-trans	Def
$L_{1} \cap L_{2}$	Prod	Prod	X
\bar{L}	Swap	X	X
$L_{1} \cdot L_{2}$	X	e-trans	Def
L^{*}	X	e-trans	Def

Summary of Blowup for Closure Properties

X means Can't Prove Easily

Summary of Blowup for Closure Properties

X means Can't Prove Easily
n_{1}, n_{2} are number of states in a DFA or NFA.

Summary of Blowup for Closure Properties

X means Can't Prove Easily
n_{1}, n_{2} are number of states in a DFA or NFA.
ℓ, ℓ_{2} are length of regex.

Summary of Blowup for Closure Properties

X means Can't Prove Easily

n_{1}, n_{2} are number of states in a DFA or NFA.
ℓ, ℓ_{2} are length of regex.

Closure Property	DFA	NFA	Regex
$L_{1} \cup L_{2}$	$n_{1} n_{2}$	$n_{1}+n_{2}$	$\ell_{1}+\ell_{2}$
$L_{1} \cap L_{2}$	$n_{1} n_{2}$	$n_{1} n_{2}$	X
$L_{1} \cdot L_{2}$	X	$n_{1}+n_{2}+1$	$\ell_{1}+\ell_{2}$
\bar{L}	n	X	X
L^{*}	X	$n+1$	$\ell+1$

Number of States for DFAs and NFAs

Minimal DFA for $L_{1}=\left\{a^{i}: i \equiv 0(\bmod 35)\right\}$

Min DFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

Min DFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

\exists DFA for $L_{2}: 35$ states: swap final-final states in DFA for L_{1}.

Small NFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

Need these two NFA's.

Small NFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

DFA for L_{2} requires 35 states.

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

DFA for L_{2} requires 35 states.
NFA for L_{2} can be done with $1+5+7=13$ states.

Proving That a Language Is Not Regular

Pumping Lemma

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

Pumping Lemma

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

How We Use the PL

How We Use the PL

We restate it in the way that we use it.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

We then find some i such that $x y^{i} z \notin L$ for the contradiction.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular
Assume L_{1} is regular.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

Contradiction since $k \geq 1$.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.
So what do to?

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.
So what do to?
If L_{3} is regular then $L_{2}=\overline{L_{3}}$ is regular. But we know that L_{2} is not regular. DONE!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.
We omit details.

Applications of DFAs

Applications of DFAs

1. Lexical Analyzer for compilers (we didn't do this).

Applications of DFAs

1. Lexical Analyzer for compilers (we didn't do this).
2. Pattern Matching Algorithms like grep (we didn't do this).

Applications of DFAs

1. Lexical Analyzer for compilers (we didn't do this).
2. Pattern Matching Algorithms like grep (we didn't do this).
3. Decidability of WS1S (we did this).

[^0]:

