Review for CMSC 452 Final

▲□▶▲□▶★国▶★国▶ ▲国▶ ● のへで

Deterministic Finite Automata (DFA)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$

・ロト・西ト・モン・モー シック

 $\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの

Nondeterministic Finite Automata (NFA)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

NFA's Intuitively

- 1. An NFA is a DFA that can guess.
- 2. NFAs do not really exist.
- 3. Good for \cup since can guess which one.
- 4. An NFA accepts iff SOME guess accepts.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Every NFA-lang a DFA-lang!

Thm If *L* is accepted by an NFA then *L* is accepted by a DFA. **Pf Sketch** *L* is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where

- 1. Get rid of *e*-transitions using reachability.
- Get rid of non-determinism by using power sets. Possibly 2ⁿ blowup.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Regular Expressions

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへぐ

Examples

- 1. *b**(*ab***ab**)**ab**
- 2. b*(ab*ab*ab*)*
- 3. $(b^*(ab^*ab^*)^*ab^*) \cup (b^*(ab^*ab^*ab^*)^*)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

$NFA \subseteq DFA$: Use Power Set Construction. Exp Blowup.

NFA \subseteq DFA: Use Power Set Construction. Exp Blowup. DFA \subseteq REGEX: Use R(i, j, k) construction.

・ロト・日本・モト・モト・モー うへぐ

NFA \subseteq DFA: Use Power Set Construction. Exp Blowup. DFA \subseteq REGEX: Use R(i, j, k) construction. REGEX \subseteq NFA: Induction on formation of regex. Linear.

Closure Properties

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

・ロト・日本・ モー・ モー うえぐ

Prod means product construction where you use $Q_1 imes Q_2$

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states. *e*-trans means by using *e*-transitions, e.g., $L_1 \cdot L_2$ for NFAs.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states. *e*-trans means by using *e*-transitions, e.g., $L_1 \cdot L_2$ for NFAs. **X** means hard to prove, e.g., \overline{L} for NFA.

Prod means product construction where you use $Q_1 \times Q_2$ **Def** means by Definition, e.g., $L_1 \cup L_2$ for regex. **Swap** means swapping final and non-final states.

e-trans means by using *e*-transitions, e.g., $L_1 \cdot L_2$ for NFAs. **X** means hard to prove, e.g., \overline{L} for NFA.

Property	DFA	NFA	regex
$L_1 \cup L_2$	Prod	<i>e</i> -trans	Def
$L_1 \cap L_2$	Prod	Prod	Х
Ī	Swap	Х	Х
$L_1 \cdot L_2$	X	<i>e</i> -trans	Def
L*	X	<i>e</i> -trans	Def

X means Can't Prove Easily

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

X means Can't Prove Easily

 n_1, n_2 are number of states in a DFA or NFA.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

X means Can't Prove Easily

 n_1, n_2 are number of states in a DFA or NFA.

 ℓ_{ℓ_2} are length of regex.

X means Can't Prove Easily

 n_1, n_2 are number of states in a DFA or NFA.

 $\ell_1\ell_2$ are length of regex.

Closure Property	DFA	NFA	Regex
$L_1 \cup L_2$	<i>n</i> ₁ <i>n</i> ₂	$n_1 + n_2$	$\ell_1 + \ell_2$
$L_1 \cap L_2$	<i>n</i> ₁ <i>n</i> ₂	<i>n</i> ₁ <i>n</i> ₂	Х
$L_1 \cdot L_2$	X	$n_1 + n_2 + 1$	$\ell_1 + \ell_2$
T	n	Х	Х
L*	Х	n+1	$\ell+1$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Number of States for DFAs and NFAs

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Minimal DFA for $L_1 = \{a^i : i \equiv 0 \pmod{35}\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Min DFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Min DFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

 \exists DFA for L_2 : 35 states: swap final-final states in DFA for L_1 .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Small NFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

Need these two NFA's.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > の < ○</p>

Small NFA for $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

$L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○へ⊙

$L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

DFA for L_2 requires 35 states.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $L_2 = \{a^i : i \not\equiv 0 \pmod{35}\}$

DFA for L_2 requires 35 states. NFA for L_2 can be done with 1 + 5 + 7 = 13 states.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Proving That a Language Is Not Regular

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Pumping Lemma

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

Pumping Lemma

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

(ロト (個) (E) (E) (E) (E) のへの
Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1. w = xyz and $y \neq e$.

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^i z \in L$.

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^i z \in L$.

Proof by picture

Pumping Lemma (PL) If *L* is regular then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

- 2. $|xy| \le n_1$ (or can take $|yz| \le n_1$ but not both.)
- 3. For all $i \ge 0$, $xy^i z \in L$.

Proof by picture

How We Use the PL

How We Use the PL

We restate it in the way that we use it.

We restate it in the way that we use it. **PL** If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

1. w = xyz and $y \neq e$.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

1.
$$w = xyz$$
 and $y \neq e$.

2. |xy| is short.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.
- 3. for all i, $xy^i z \in L$.

PL If *L* is reg then for large enough strings w in *L* there exist x, y, z such that:

- 1. w = xyz and $y \neq e$.
- 2. |xy| is short.
- 3. for all i, $xy^i z \in L$.

We then find some *i* such that $xy^i z \notin L$ for the contradiction.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume L_1 is regular.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: **1**. $y \neq e$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \geq 0$, $xy^i z \in L_1$.

Assume L_1 is regular.

- By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:
 - 1. $y \neq e$.
 - 2. |xy| is short.
 - 3. For all $i \ge 0$, $xy^i z \in L_1$.

Take w long enough so that the xy part only has a's.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$:

- 1. $y \neq e$.
- 2. |xy| is short.
- 3. For all $i \ge 0$, $xy^i z \in L_1$.

Take *w* long enough so that the *xy* part only has *a*'s. $x = a^{j}$, $y = a^{k}$, $z = a^{n-j-k}b^{n}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \geq 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$.

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

ション ふぼう メリン メリン しょうくしゃ

are in L_1 .

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

ション ふぼう メリン メリン しょうくしゃ

are in L_1 . Take i = 2 to get

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take *w* long enough so that the *xy* part only has *a*'s. $x = a^j$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 . Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

ション ふぼう メリン メリン しょうくしゃ

Assume L_1 is regular. By PL, for long $a^n b^n \in L_1$, $\exists x, y, z$: 1. $y \neq e$. 2. |xy| is short. 3. For all $i \ge 0$, $xy^i z \in L_1$. Take w long enough so that the xy part only has a's. $x = a^i$, $y = a^k$, $z = a^{n-j-k}b^n$. Note $k \ge 1$. By the PL, all of the words

$$a^{j}\left(a^{k}
ight)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in L_1 . Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

ション ふゆ アメビア メロア しょうくしゃ

Contradiction since $k \ge 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

ション ふゆ アメビア メロア しょうくしゃ

So what do to?

PL Does Not Help. When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

If L_3 is regular then $L_2 = \overline{L_3}$ is regular. But we know that L_2 is not regular. DONE!

$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

Intuition Perfect squares keep getting further apart.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant *k* to produce a word in the language. We omit details.
<u>(□)<l

1. Lexical Analyzer for compilers (we didn't do this).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○

- 1. Lexical Analyzer for compilers (we didn't do this).
- 2. Pattern Matching Algorithms like grep (we didn't do this).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- 1. Lexical Analyzer for compilers (we didn't do this).
- 2. Pattern Matching Algorithms like grep (we didn't do this).

3. Decidability of WS1S (we did this).