
More on Hilbert’s Tenth
Problem



Recall Hilbert’s Tenth Problem

Hilbert’s 10th problem (in modern language) Give an
algorithm that will, given p(x1, . . . , xn) ∈ Z[x1, . . . , xn] determine if
there exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

By the combined efforts of Davis-Putnam-Robinson (1959) and
Matiyasevich (1970) showed the following:

Thm There is no such algorithm.
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Beginning of the Proof that H10 is Undecidable

The proof consists of

1. Show that many sets can be expressed using polynomials.

2. Show that HALT can be expressed using polynomials.

We will discuss expressing sets using polynomials.
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Diophantine Sets



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[(a ≥ 0) ∧ (p(a1, . . . , an, a) = 0)].

Def A is Diophantine (Dio) if there exists a polynomial
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

a ∈ A iff (∃a1, . . . , an)[p(a1, . . . , an) = a].

The definitions are equivalent.

We use the first one on slides. We may use second on HW.



Examples of Dio Sets

{x : x ≡ 0 (mod 3)} = {x : (∃y)[(x ≥ 0) ∧ (x − 3y = 0)]}

{x : x ̸≡ 0 (mod 3)}. Try with neighbor.

{x : x ̸≡ 0 (mod 3)} = {x : x ≡ 1 (mod 3)}∪{x : x ≡ 2 (mod 3)}

{x : x ≡ 1 (mod 3)} = {x : (∃y)[(x ≥ 0) ∧ (x − 3y − 1 = 0)]}
{x : x ≡ 2 (mod 3)} = {x : (∃y)[(x ≥ 0) ∧ (x − 3y − 2 = 0)]}
Is there a way to combine these? Yes!
{x : x ̸≡ 0 (mod 3)} =

{x : (∃y)[(x ≥ 0) ∧ ((x − 3y − 1)(x − 3y − 2) = 0)]}.
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Dio Sets are Closed Under Union

Let A,B be Dio Sets.

A = {x : (∃y1, . . . , yn)[(x ≥ 0) ∧ (pA(y1, . . . , yn, x) = 0)]}
B = {x : (∃z1, . . . , zn)[(x ≥ 0) ∧ (pB(z1, . . . , zn, x) = 0)]}

A ∪ B =
{x : (∃y1, . . . , yn, z1, . . . , zn)

[(x ≥ 0) ∧ (pA(y1, . . . , yn, x)pB(z1, . . . , zn, x) = 0)]}.
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More Examples of Dio Sets

{x : x is a square } = {x : (∃y)[(x ≥ 0) ∧ (x − y2 = 0)]}

{x : x ≡ 0 (mod 3)} = {x : (∃y)[(x ≥ 0) ∧ (x − 3y = 0)]}

{x : x is a square ∧ x ≡ 0 (mod 3)}. Try with neighbor.

= {x : (∃y1, y2)[(x ≥ 0) ∧ ((x − y21 )
2 + (x − 3y2)

2 = 0)]}.
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2 + pB(z1, . . . , zn, x)
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COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

COMP = {x : (∃y1, y2)[(x ≥ 0) ∧ ((y1 + 2)(y2 + 2)− x = 0)]}.

PRIMES is the set of primes (duh). Is PRIMES Dio?
No but Yes. Really Yes but its complicated. Uses 26 variables.
See https:
//www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf

https://www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf
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NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two.
We show this is Dio

A number is NOT a power of 2 if it has an odd factor.

NOTPOW2 = {x : (∃y1, y2)[(x ≥ 0) ∧ (y1(2y2 + 3)− x = 0)]}
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn’t show H10 undecidable.
They were unable to prove this.
Why was Matiyasevich able to solve it when DPR were not?

Next Slide



NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two.
We show this is Dio
A number is NOT a power of 2 if it has an odd factor.

NOTPOW2 = {x : (∃y1, y2)[(x ≥ 0) ∧ (y1(2y2 + 3)− x = 0)]}
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn’t show H10 undecidable.
They were unable to prove this.
Why was Matiyasevich able to solve it when DPR were not?

Next Slide



NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two.
We show this is Dio
A number is NOT a power of 2 if it has an odd factor.

NOTPOW2 = {x : (∃y1, y2)[(x ≥ 0) ∧ (y1(2y2 + 3)− x = 0)]}

POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn’t show H10 undecidable.
They were unable to prove this.
Why was Matiyasevich able to solve it when DPR were not?

Next Slide



NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two.
We show this is Dio
A number is NOT a power of 2 if it has an odd factor.

NOTPOW2 = {x : (∃y1, y2)[(x ≥ 0) ∧ (y1(2y2 + 3)− x = 0)]}
POW2 is the set of powers of 2 (duh). Is POW2 Dio?

No but Yes. Really yes but its complicated.
This was the reason DPR didn’t show H10 undecidable.
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A Short Episode in the History of H10

From The Honor Class: Hilbert’s Problems and their Solvers
by Ben Yandell:

All four of them had been reading up on obscure facts in
Number Theory that might help them.
Yuri was looking at the book

Fibonacci Numbers by Vorobov, third edition.
He found the key theorem there:

If F 2
n divides Fm then Fn divides m.

Robinson did have the same book (yeah!),
but a different edition which didn’t have that thm (boo!) .

Wow Who discovers what can be arbitrary!

Note I reviewed the book here:
https://www.cs.umd.edu/~gasarch/bookrev/44-4.pdf

https://www.cs.umd.edu/~gasarch/bookrev/44-4.pdf
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Back to the Proof

The final step of the proof was to show that HALT is Dio .

Thm There exists a polynomial p(x1, . . . , x9) over Z such that
a ∈ HALT iff (∃a1, . . . , a8 ∈ Z)[p(a1, . . . , a8, a) = 0].

Cor There is no algorithm that will, given a polynomial
q(x1, . . . , x8) over Z, determine if there exists a1, . . . , a8 ∈ Z such
that q(a1, . . . , a8) = 0.
Assume BWOC, there’s an algorithm. Then we can solve HALT:

1. Input a

2. Form the polynomial q(x1, . . . , x8) = p(x1, . . . , x8, a).

3. Use the algorithm to determine if there exists a1, . . . , a8 such
that q(a1, . . . , a8) = 0.
If YES then output YES.
If NOT then output NO.
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Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an
algorithm that would do the following.

1. Input a mathematical statement.
Example (∀x , y , z ∈ N)(∀n ∈ N, n ≥ 3)[xn + yn ̸= zn]
Thats Fermat’s last theorem.
Example Domain is set of continuous functions from R to R.
(∀f )[(f (0) < 0 ∧ f (1) > 0) → (∃0 < z < 1)[f (z) = 0]]
This is the intermediate value theorem.

2. Output if the statement is TRUE or FALSE.
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H10 AS AN UNDEC
THEORY



How to Formalize and Refine Hilbert’s Goal

1. Need a language to make mathematical statements.

2. Need to know the domain of discourse for variables.

Was Hilbert’s Goal Achieved?

No. Godel showed that if the language was powerful enough
then there could be no algorithm to determine truth.

We will derive Godel’s Theorem easily from H10 being undecidable.

The original proof was much harder.
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“Powerful Enough”

Godel showed that if the language was powerful enough then
there could be no algorithm to determine truth.

What about weak languages?

1. In this set of slides we will show a theory that is undecidable.

2. We will then state it as Godel would have.

3. Later we will look at theories that are decidable.
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1. A Formula allows variables to not be quantified over. A
Formula is neither true or false. Example: (∃x)[x + y = 7].

2. A Sentence has all variables quantified over. Example:
(∀y)(∃x)[x + y = 7]. So a Sentence is either true or false.
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(∀y)(∃x)[x + y = 7]— T if domain is Z, the integers.
(∀y)(∃x)[x + y = 7]— F if domain is N, the naturals.
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Variables and Symbols

We formulate H10 undecidable in these terms. Consider the
following language.

1. The logical symbols ∧, ¬, (∃).
2. We use ∨ and ∀ as shorthand–can be converted to ∧ and ∃.
3. Variables x , y , z , . . . that range over Z.
4. Constants: . . . ,−3,−2,−1, 0, 1, 2, 3, . . ..

5. The symbols +, ×, and =.
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Examples of Formulas and Sentences

Formula
x2 + 3y − 10xy + z3 = 0
NONE of x , y ,X are quantified over, so its a formula.

Formula (∃x)[x2 + 3y − 10xy + z3 = 0]
There is a var not quantified over.

Sentence
(∃x , y , z)[x2 + 3y − 10xy + z3 = 0]
ALL of the vars are quantified over.
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An Atomic Formula is:

1. For any polynomial p(x1, . . . , xn) ∈ Z[x1, . . . , xn]

p(x1, . . . , xn) = 0

is an Atomic Formula.
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H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H10 Formula.

2. If ϕ1, ϕ2 are H10 Formulas then so are

2.1 ϕ1 ∧ ϕ2,
2.2 ϕ1 ∨ ϕ2

2.3 ¬ϕ1

3. If ϕ(x1, . . . , xn) is a H10 Formula then so is
(∃xi )[ϕ(x1, . . . , xn)]
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The Poly Theory of the Integers

Is the following problem decidable?

▶ Input ϕ, a sentence in H10.

▶ Determine if ϕ is TRUE.

Since H10 is undecidable, this problem is NOT decidable.

In fact, H10 restricted to just ∃-statements is undecidable.
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H10 Implies Godel’s Inc
Theorem



How Godel Would Have Stated It

In the popular press Godel’s Inc Theorem is quoted as:

There are statements in Math that are TRUE but not
PROVABLE

Unlike many comments about math in the popular press this one is
true.
However, we need to state Godel’s inc Thm more carefully.
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Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and
rules of inference

We are busy people so we are not going to bother with the
particular axioms of PA. We will note that (1) PA has +, ×,
(2) PA allows the use of induction, (3) PA uses domain N
though can be extended to Z, and (4) Virtually every thm in
Number Theory can be derived in PA.

Godel showed that there is a statement ϕ such that

1. ϕ is TRUE.

2. ϕ cannot be derived from PA.

This is impressive since almost all of number theory can be derived
in PA.
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Whats so Special about Peano Arithmetic?

Godel’s technique applies to any (with caveats) system that has
+ and ×. So its not really about PA.



H10 undecidable implies Godel’s Inc. Theorem

We will use PA for concreteness.

Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H10, a contradiction.

1. Input p(x1, . . . , xn). So we are asking if
(∃a1, . . . , an)[p(a1, . . . , an) = 0] is TRUE.

2. For s = 1 to infinity

2.1 Find all statements that can be derived in PA using ≤ s steps.
2.2 If one of them is (∃x1, . . . , xn)[p(x1, . . . , xn) = 0]

then output YES and halt.
2.3 If one of them is ¬(∃x1, . . . , xn)[p(x1, . . . , xn) = 0]

then output NO and halt.
2.4 If neither of those happens then go to the next s

Since we are assuming every true statement is derivable in PA,
then this algorithm must terminate and correctly determine if
p(x1, . . . , xn) has an integer solution. Contradiction!
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Variants of H10



Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.

Let d be the degree and n be the number of variables.
There is a grid of (d , n) where

1. For small values of d , n H10 is decidable.

2. For large values of d , n H10 is undecidable.

3. There is are many d , n for which this is unknown.

4. Resolving the ones that are unknown seems hard.
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Different Domain For the Solution

We’ve been talking about H10 where we seek a solution in Z.

Let D ⊆ C. H10 for D is the following problem: Given
p ∈ Z[x1, . . . , xn] does there exist a1, . . . , an ∈ D such that
p(a1, . . . , an) = 0 ?

1. D = N. Undecidable

2. D = Z. Undecidable

3. D = Q. Unknown to Science! Matiyasevich thinks this
may be what Hilbert meant to ask and that it would lead to
Number Theory of Interest.

4. D = R. Decidable . Tarski-Seidenberg (1974)

5. D = C. Decidable but trivial: always true.

6. Other domains: Mostly unknown.
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