More on Hilbert＇s Tenth Problem

Recall Hilbert's Tenth Problem

Hilbert's 10th problem (in modern language) Give an algorithm that will, given $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ determine if there exists $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$.

Recall Hilbert's Tenth Problem

Hilbert's 10th problem (in modern language) Give an algorithm that will, given $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ determine if there exists $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$.

By the combined efforts of Davis-Putnam-Robinson (1959) and Matiyasevich (1970) showed the following:

Recall Hilbert's Tenth Problem

Hilbert's 10th problem (in modern language) Give an algorithm that will, given $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ determine if there exists $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$.

By the combined efforts of Davis-Putnam-Robinson (1959) and Matiyasevich (1970) showed the following:

Thm There is no such algorithm.

Beginning of the Proof that H 10 is Undecidable

The proof consists of

Beginning of the Proof that H 10 is Undecidable

The proof consists of

1. Show that many sets can be expressed using polynomials.

Beginning of the Proof that H 10 is Undecidable

The proof consists of

1. Show that many sets can be expressed using polynomials.
2. Show that HALT can be expressed using polynomials.

Beginning of the Proof that H 10 is Undecidable

The proof consists of

1. Show that many sets can be expressed using polynomials.
2. Show that HALT can be expressed using polynomials.

We will discuss expressing sets using polynomials.

Diophantine Sets

[^0]
Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[(a \geq 0) \wedge\left(p\left(a_{1}, \ldots, a_{n}, a\right)=0\right)\right] .
$$

Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[(a \geq 0) \wedge\left(p\left(a_{1}, \ldots, a_{n}, a\right)=0\right)\right] .
$$

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[(a \geq 0) \wedge\left(p\left(a_{1}, \ldots, a_{n}, a\right)=0\right)\right]
$$

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=a\right] .
$$

Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[(a \geq 0) \wedge\left(p\left(a_{1}, \ldots, a_{n}, a\right)=0\right)\right]
$$

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=a\right] .
$$

The definitions are equivalent.

Diophantine Sets

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[(a \geq 0) \wedge\left(p\left(a_{1}, \ldots, a_{n}, a\right)=0\right)\right]
$$

Def A is Diophantine (Dio) if there exists a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
a \in A \text { iff }\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=a\right] .
$$

The definitions are equivalent.
We use the first one on slides. We may use second on HW.

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

Examples of Dio Sets

$$
\left.\begin{array}{l}
\quad\{x: x \equiv 0(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\} \\
\{x:
\end{array} x \neq 0(\bmod 3)\right\} .
$$

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.

$$
\{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2 \quad(\bmod 3)\}
$$

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.

$$
\begin{aligned}
& \{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2(\bmod 3)\} \\
& \{x: x \equiv 1(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-1=0)]\}
\end{aligned}
$$

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.

$$
\begin{aligned}
& \{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2 \quad(\bmod 3)\} \\
& \{x: x \equiv 1(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-1=0)]\} \\
& \{x: x \equiv 2(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-2=0)]\}
\end{aligned}
$$

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.
$\{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2 \quad(\bmod 3)\}$
$\{x: x \equiv 1(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-1=0)]\}$
$\{x: x \equiv 2(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-2=0)]\}$
Is there a way to combine these? Yes!

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.
$\{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2 \quad(\bmod 3)\}$
$\{x: x \equiv 1(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-1=0)]\}$
$\{x: x \equiv 2(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-2=0)]\}$
Is there a way to combine these? Yes!
$\{x: x \not \equiv 0(\bmod 3)\}=$

Examples of Dio Sets

$$
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
$$

$\{x: x \not \equiv 0(\bmod 3)\}$. Try with neighbor.
$\{x: x \not \equiv 0 \quad(\bmod 3)\}=\{x: x \equiv 1 \quad(\bmod 3)\} \cup\{x: x \equiv 2 \quad(\bmod 3)\}$
$\{x: x \equiv 1(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-1=0)]\}$
$\{x: x \equiv 2(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y-2=0)]\}$
Is there a way to combine these? Yes!
$\{x: x \not \equiv 0(\bmod 3)\}=$

$$
\{x:(\exists y)[(x \geq 0) \wedge((x-3 y-1)(x-3 y-2)=0)]\}
$$

Dio Sets are Closed Under Union

Let A, B be Dio Sets.

Dio Sets are Closed Under Union

Let A, B be Dio Sets.
$A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\}$

Dio Sets are Closed Under Union

Let A, B be Dio Sets.

$$
\begin{aligned}
& A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\} \\
& B=\left\{x:\left(\exists z_{1}, \ldots, z_{n}\right)\left[(x \geq 0) \wedge\left(p_{B}\left(z_{1}, \ldots, z_{n}, x\right)=0\right)\right]\right\}
\end{aligned}
$$

Dio Sets are Closed Under Union

Let A, B be Dio Sets.

$$
\begin{aligned}
& A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\} \\
& B=\left\{x:\left(\exists z_{1}, \ldots, z_{n}\right)\left[(x \geq 0) \wedge\left(p_{B}\left(z_{1}, \ldots, z_{n}, x\right)=0\right)\right]\right\}
\end{aligned}
$$

$A \cup B=$
$\left\{x:\left(\exists y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right)\right.$

$$
\left.\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right) p_{B}\left(z_{1}, \ldots, z_{n}, x\right)=0\right)\right]\right\}
$$

More Examples of Dio Sets

$\{x: x$ is a square $\}=\left\{x:(\exists y)\left[(x \geq 0) \wedge\left(x-y^{2}=0\right)\right]\right\}$

More Examples of Dio Sets

$$
\begin{gathered}
\{x: x \text { is a square }\}=\left\{x:(\exists y)\left[(x \geq 0) \wedge\left(x-y^{2}=0\right)\right]\right\} \\
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
\end{gathered}
$$

More Examples of Dio Sets

$$
\begin{gathered}
\{x: x \text { is a square }\}=\left\{x:(\exists y)\left[(x \geq 0) \wedge\left(x-y^{2}=0\right)\right]\right\} \\
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
\end{gathered}
$$

$\{x: x$ is a square $\wedge x \equiv 0(\bmod 3)\}$.

More Examples of Dio Sets

$$
\begin{gathered}
\{x: x \text { is a square }\}=\left\{x:(\exists y)\left[(x \geq 0) \wedge\left(x-y^{2}=0\right)\right]\right\} \\
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
\end{gathered}
$$

$\{x: x$ is a square $\wedge x \equiv 0(\bmod 3)\}$. Try with neighbor.

More Examples of Dio Sets

$$
\begin{gathered}
\{x: x \text { is a square }\}=\left\{x:(\exists y)\left[(x \geq 0) \wedge\left(x-y^{2}=0\right)\right]\right\} \\
\{x: x \equiv 0 \quad(\bmod 3)\}=\{x:(\exists y)[(x \geq 0) \wedge(x-3 y=0)]\}
\end{gathered}
$$

$\{x: x$ is a square $\wedge x \equiv 0(\bmod 3)\}$. Try with neighbor.

$$
=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(x-y_{1}^{2}\right)^{2}+\left(x-3 y_{2}\right)^{2}=0\right)\right]\right\} .
$$

Dio Sets are Closed Under Intersection

Let A, B be Dio Sets.

Dio Sets are Closed Under Intersection

Let A, B be Dio Sets.
$A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\}$

Dio Sets are Closed Under Intersection

Let A, B be Dio Sets.
$A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\}$
$B=\left\{x:\left(\exists z_{1}, \ldots, z_{n}\right)\left[(x \geq 0) \wedge\left(p_{B}\left(z_{1}, \ldots, z_{n}, x\right)=0\right)\right]\right\}$

Dio Sets are Closed Under Intersection

Let A, B be Dio Sets.
$A=\left\{x:\left(\exists y_{1}, \ldots, y_{n}\right)\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)=0\right)\right]\right\}$
$B=\left\{x:\left(\exists z_{1}, \ldots, z_{n}\right)\left[(x \geq 0) \wedge\left(p_{B}\left(z_{1}, \ldots, z_{n}, x\right)=0\right)\right]\right\}$
$A \cap B=\left\{x:\left(\exists y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right)\right.$

$$
\left.\left[(x \geq 0) \wedge\left(p_{A}\left(y_{1}, \ldots, y_{n}, x\right)^{2}+p_{B}\left(z_{1}, \ldots, z_{n}, x\right)^{2}=0\right)\right]\right\}
$$

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

$$
\mathrm{COMP}=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(y_{1}+2\right)\left(y_{2}+2\right)-x=0\right)\right]\right\}
$$

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

$$
\mathrm{COMP}=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(y_{1}+2\right)\left(y_{2}+2\right)-x=0\right)\right]\right\}
$$

PRIMES is the set of primes (duh). Is PRIMES Dio?

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

$$
\mathrm{COMP}=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(y_{1}+2\right)\left(y_{2}+2\right)-x=0\right)\right]\right\}
$$

PRIMES is the set of primes (duh). Is PRIMES Dio? No but Yes.

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

$$
\mathrm{COMP}=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(y_{1}+2\right)\left(y_{2}+2\right)-x=0\right)\right]\right\}
$$

PRIMES is the set of primes (duh). Is PRIMES Dio? No but Yes. Really Yes but its complicated. Uses 26 variables.

COMP is a Dio Sets

COMP is the set of composites. We show this is Dio.

$$
\mathrm{COMP}=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(\left(y_{1}+2\right)\left(y_{2}+2\right)-x=0\right)\right]\right\}
$$

PRIMES is the set of primes (duh). Is PRIMES Dio?
No but Yes. Really Yes but its complicated. Uses 26 variables.
See https:
//www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax.pdf

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$ POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes.

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn't show H 10 undecidable.

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn't show H 10 undecidable.
They were unable to prove this.

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn't show H 10 undecidable.
They were unable to prove this.
Why was Matiyasevich able to solve it when DPR were not?

NOTPOWtwo is a Dio Sets

NOTPOW2 is the set of numbers that are NOT powers of two. We show this is Dio
A number is NOT a power of 2 if it has an odd factor.
NOTPOW2 $=\left\{x:\left(\exists y_{1}, y_{2}\right)\left[(x \geq 0) \wedge\left(y_{1}\left(2 y_{2}+3\right)-x=0\right)\right]\right\}$
POW2 is the set of powers of 2 (duh). Is POW2 Dio?
No but Yes. Really yes but its complicated.
This was the reason DPR didn't show H 10 undecidable.
They were unable to prove this.
Why was Matiyasevich able to solve it when DPR were not?
Next Slide

A Short Episode in the History of H10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.

A Short Episode in the History of H10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition.

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them. Yuri was looking at the book

Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

If F_{n}^{2} divides F_{m} then F_{n} divides m.

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

If F_{n}^{2} divides F_{m} then F_{n} divides m.
Robinson did have the same book (yeah!),

A Short Episode in the History of H10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

If F_{n}^{2} divides F_{m} then F_{n} divides m.
Robinson did have the same book (yeah!), but a different edition which didn't have that thm (boo!) .

A Short Episode in the History of H10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition.
He found the key theorem there:
If F_{n}^{2} divides F_{m} then F_{n} divides m.
Robinson did have the same book (yeah!), but a different edition which didn't have that thm (boo!) .

Wow

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

If F_{n}^{2} divides F_{m} then F_{n} divides m.
Robinson did have the same book (yeah!), but a different edition which didn't have that thm (boo!) .

Wow Who discovers what can be arbitrary!

A Short Episode in the History of H 10

From The Honor Class: Hilbert's Problems and their Solvers by Ben Yandell:

All four of them had been reading up on obscure facts in Number Theory that might help them.
Yuri was looking at the book
Fibonacci Numbers by Vorobov, third edition. He found the key theorem there:

If F_{n}^{2} divides F_{m} then F_{n} divides m.
Robinson did have the same book (yeah!), but a different edition which didn't have that thm (boo!) .

Wow Who discovers what can be arbitrary!
Note I reviewed the book here:
https://www.cs.umd.edu/~gasarch/bookrev/44-4.pdf

Back to the Proof

The final step of the proof was to show that HALT is Dio .

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in \operatorname{HALT}$ iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

1. Input a

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

1. Input a
2. Form the polynomial $q\left(x_{1}, \ldots, x_{8}\right)=p\left(x_{1}, \ldots, x_{8}, a\right)$.

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

1. Input a
2. Form the polynomial $q\left(x_{1}, \ldots, x_{8}\right)=p\left(x_{1}, \ldots, x_{8}, a\right)$.
3. Use the algorithm to determine if there exists a_{1}, \ldots, a_{8} such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

1. Input a
2. Form the polynomial $q\left(x_{1}, \ldots, x_{8}\right)=p\left(x_{1}, \ldots, x_{8}, a\right)$.
3. Use the algorithm to determine if there exists a_{1}, \ldots, a_{8} such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
If YES then output YES.

Back to the Proof

The final step of the proof was to show that HALT is Dio . Thm There exists a polynomial $p\left(x_{1}, \ldots, x_{9}\right)$ over \mathbb{Z} such that $a \in$ HALT iff $\left(\exists a_{1}, \ldots, a_{8} \in \mathbb{Z}\right)\left[p\left(a_{1}, \ldots, a_{8}, a\right)=0\right]$.
Cor There is no algorithm that will, given a polynomial $q\left(x_{1}, \ldots, x_{8}\right)$ over \mathbb{Z}, determine if there exists $a_{1}, \ldots, a_{8} \in \mathbb{Z}$ such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
Assume BWOC, there's an algorithm. Then we can solve HALT:

1. Input a
2. Form the polynomial $q\left(x_{1}, \ldots, x_{8}\right)=p\left(x_{1}, \ldots, x_{8}, a\right)$.
3. Use the algorithm to determine if there exists a_{1}, \ldots, a_{8} such that $q\left(a_{1}, \ldots, a_{8}\right)=0$.
If YES then output YES.
If NOT then output NO.

Decidable and Undecidable Theories

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Example $(\forall x, y, z \in \mathbb{N})(\forall n \in \mathbb{N}, n \geq 3)\left[x^{n}+y^{n} \neq z^{n}\right]$

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Example $(\forall x, y, z \in \mathbb{N})(\forall n \in \mathbb{N}, n \geq 3)\left[x^{n}+y^{n} \neq z^{n}\right]$
Thats Fermat's last theorem.

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Example $(\forall x, y, z \in \mathbb{N})(\forall n \in \mathbb{N}, n \geq 3)\left[x^{n}+y^{n} \neq z^{n}\right]$
Thats Fermat's last theorem.
Example Domain is set of continuous functions from \mathbb{R} to \mathbb{R}.
$(\forall f)[(f(0)<0 \wedge f(1)>0) \rightarrow(\exists 0<z<1)[f(z)=0]]$

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Example $(\forall x, y, z \in \mathbb{N})(\forall n \in \mathbb{N}, n \geq 3)\left[x^{n}+y^{n} \neq z^{n}\right]$
Thats Fermat's last theorem.
Example Domain is set of continuous functions from \mathbb{R} to \mathbb{R}.
$(\forall f)[(f(0)<0 \wedge f(1)>0) \rightarrow(\exists 0<z<1)[f(z)=0]]$
This is the intermediate value theorem.

Decidable and Undecidable Theories

Hilbert wanted to (in modern language) show there was an algorithm that would do the following.

1. Input a mathematical statement.

Example $(\forall x, y, z \in \mathbb{N})(\forall n \in \mathbb{N}, n \geq 3)\left[x^{n}+y^{n} \neq z^{n}\right]$
Thats Fermat's last theorem.
Example Domain is set of continuous functions from \mathbb{R} to \mathbb{R}.
$(\forall f)[(f(0)<0 \wedge f(1)>0) \rightarrow(\exists 0<z<1)[f(z)=0]]$
This is the intermediate value theorem.
2. Output if the statement is TRUE or FALSE.

H10 AS AN UNDEC THEORY

How to Formalize and Refine Hilbert's Goal

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.
2. Need to know the domain of discourse for variables.

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.
2. Need to know the domain of discourse for variables.

Was Hilbert's Goal Achieved?

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.
2. Need to know the domain of discourse for variables.

Was Hilbert's Goal Achieved?
No. Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.
2. Need to know the domain of discourse for variables.

Was Hilbert's Goal Achieved?
No. Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

We will derive Godel's Theorem easily from H 10 being undecidable.

How to Formalize and Refine Hilbert's Goal

1. Need a language to make mathematical statements.
2. Need to know the domain of discourse for variables.

Was Hilbert's Goal Achieved?
No. Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

We will derive Godel's Theorem easily from H 10 being undecidable.
The original proof was much harder.

"Powerful Enough"

"Powerful Enough"

Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

"Powerful Enough"

Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

What about weak languages?

"Powerful Enough"

Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

What about weak languages?

1. In this set of slides we will show a theory that is undecidable.

"Powerful Enough"

Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

What about weak languages?

1. In this set of slides we will show a theory that is undecidable.
2. We will then state it as Godel would have.

"Powerful Enough"

Godel showed that if the language was powerful enough then there could be no algorithm to determine truth.

What about weak languages?

1. In this set of slides we will show a theory that is undecidable.
2. We will then state it as Godel would have.
3. Later we will look at theories that are decidable.

Formulas and Sentences

Formulas and Sentences

1. A Formula allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x+y=7]$.

Formulas and Sentences

1. A Formula allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x+y=7]$.
2. A Sentence has all variables quantified over. Example: $(\forall y)(\exists x)[x+y=7]$. So a Sentence is either true or false.

Formulas and Sentences

1. A Formula allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x+y=7]$.
2. A Sentence has all variables quantified over. Example: $(\forall y)(\exists x)[x+y=7]$. So a Sentence is either true or false. Wrong -need to also know the domain. $(\forall y)(\exists x)[x+y=7]-\mathbf{T}$ if domain is \mathbb{Z}, the integers.

Formulas and Sentences

1. A Formula allows variables to not be quantified over. A Formula is neither true or false. Example: $(\exists x)[x+y=7]$.
2. A Sentence has all variables quantified over. Example: $(\forall y)(\exists x)[x+y=7]$. So a Sentence is either true or false. Wrong -need to also know the domain.
$(\forall y)(\exists x)[x+y=7]-\mathbf{T}$ if domain is \mathbb{Z}, the integers.
$(\forall y)(\exists x)[x+y=7]-\mathbf{F}$ if domain is \mathbb{N}, the naturals.

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. We use \vee and \forall as shorthand-can be converted to \wedge and \exists.

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. We use \vee and \forall as shorthand-can be converted to \wedge and \exists.
3. Variables x, y, z, \ldots that range over \mathbb{Z}.

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. We use \vee and \forall as shorthand-can be converted to \wedge and \exists.
3. Variables x, y, z, \ldots that range over \mathbb{Z}.
4. Constants: $\ldots,-3,-2,-1,0,1,2,3, \ldots$

Variables and Symbols

We formulate H 10 undecidable in these terms. Consider the following language.

1. The logical symbols $\wedge, \neg,(\exists)$.
2. We use \vee and \forall as shorthand-can be converted to \wedge and \exists.
3. Variables x, y, z, \ldots that range over \mathbb{Z}.
4. Constants: $\ldots,-3,-2,-1,0,1,2,3, \ldots$.
5. The symbols,$+ \times$, and $=$.

Examples of Formulas and Sentences

Formula
$x^{2}+3 y-10 x y+z^{3}=0$
NONE of x, y, X are quantified over, so its a formula.
Formula $(\exists x)\left[x^{2}+3 y-10 x y+z^{3}=0\right]$
There is a var not quantified over.

Examples of Formulas and Sentences

Formula
$x^{2}+3 y-10 x y+z^{3}=0$
NONE of x, y, X are quantified over, so its a formula.
Formula $(\exists x)\left[x^{2}+3 y-10 x y+z^{3}=0\right]$
There is a var not quantified over.
Sentence
$(\exists x, y, z)\left[x^{2}+3 y-10 x y+z^{3}=0\right]$
ALL of the vars are quantified over.

Atomic Formulas

An Atomic Formula is:

Atomic Formulas

An Atomic Formula is:

1. For any polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

$$
p\left(x_{1}, \ldots, x_{n}\right)=0
$$

is an Atomic Formula.

H10 Formulas

A H10 Formula is:

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.
2. If ϕ_{1}, ϕ_{2} are H 10 Formulas then so are

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.
2. If ϕ_{1}, ϕ_{2} are H 10 Formulas then so are $2.1 \phi_{1} \wedge \phi_{2}$,

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.
2. If ϕ_{1}, ϕ_{2} are H 10 Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.
2. If ϕ_{1}, ϕ_{2} are H 10 Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$
$2.3 \neg \phi_{1}$

H10 Formulas

A H10 Formula is:

1. Any Atomic Formula is a H 10 Formula.
2. If ϕ_{1}, ϕ_{2} are H 10 Formulas then so are
$2.1 \phi_{1} \wedge \phi_{2}$,
$2.2 \phi_{1} \vee \phi_{2}$
$2.3 \neg \phi_{1}$
3. If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a H 10 Formula then so is $\left(\exists x_{i}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]$

The Poly Theory of the Integers

Is the following problem decidable?

The Poly Theory of the Integers

Is the following problem decidable?

- Input ϕ, a sentence in H 10 .

The Poly Theory of the Integers

Is the following problem decidable?

- Input ϕ, a sentence in H10.
- Determine if ϕ is TRUE.

The Poly Theory of the Integers

Is the following problem decidable?

- Input ϕ, a sentence in H10.
- Determine if ϕ is TRUE.

Since H 10 is undecidable, this problem is NOT decidable.

The Poly Theory of the Integers

Is the following problem decidable?

- Input ϕ, a sentence in H10.
- Determine if ϕ is TRUE.

Since H 10 is undecidable, this problem is NOT decidable.
In fact, H 10 restricted to just \exists-statements is undecidable.

H10 Implies Godel＇s Inc Theorem

How Godel Would Have Stated It

In the popular press Godel's Inc Theorem is quoted as:

How Godel Would Have Stated It

In the popular press Godel's Inc Theorem is quoted as: There are statements in Math that are TRUE but not PROVABLE

How Godel Would Have Stated It

In the popular press Godel's Inc Theorem is quoted as: There are statements in Math that are TRUE but not PROVABLE

Unlike many comments about math in the popular press this one is true.

How Godel Would Have Stated It

In the popular press Godel's Inc Theorem is quoted as: There are statements in Math that are TRUE but not PROVABLE

Unlike many comments about math in the popular press this one is true.
However, we need to state Godel's inc Thm more carefully.

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference
We are busy people so we are not going to bother with the particular axioms of PA. We will note that (1) PA has,$+ \times$, (2) PA allows the use of induction, (3) PA uses domain \mathbb{N} though can be extended to \mathbb{Z}, and (4) Virtually every thm in Number Theory can be derived in PA.

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference
We are busy people so we are not going to bother with the particular axioms of PA. We will note that (1) PA has,$+ \times$, (2) PA allows the use of induction, (3) PA uses domain \mathbb{N} though can be extended to \mathbb{Z}, and (4) Virtually every thm in Number Theory can be derived in PA.

Godel showed that there is a statement ϕ such that

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference
We are busy people so we are not going to bother with the particular axioms of PA. We will note that (1) PA has,$+ \times$, (2) PA allows the use of induction, (3) PA uses domain \mathbb{N} though can be extended to \mathbb{Z}, and (4) Virtually every thm in Number Theory can be derived in PA.

Godel showed that there is a statement ϕ such that

1. ϕ is TRUE.

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference
We are busy people so we are not going to bother with the particular axioms of PA. We will note that (1) PA has,$+ \times$, (2) PA allows the use of induction, (3) PA uses domain \mathbb{N} though can be extended to \mathbb{Z}, and (4) Virtually every thm in Number Theory can be derived in PA.

Godel showed that there is a statement ϕ such that

1. ϕ is TRUE.
2. ϕ cannot be derived from PA.

Peano Arithmetic (PA)

Def Peano Arithmetic (PA) is the following set of axioms and rules of inference
We are busy people so we are not going to bother with the particular axioms of PA. We will note that (1) PA has,$+ \times$, (2) PA allows the use of induction, (3) PA uses domain \mathbb{N} though can be extended to \mathbb{Z}, and (4) Virtually every thm in Number Theory can be derived in PA.

Godel showed that there is a statement ϕ such that

1. ϕ is TRUE.
2. ϕ cannot be derived from PA.

This is impressive since almost all of number theory can be derived in PA.

Whats so Special about Peano Arithmetic?

Godel's technique applies to any (with caveats) system that has + and \times. So its not really about PA.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if

$$
\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \text { is TRUE. }
$$

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.
2.2 If one of them is $\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right.$] then output YES and halt.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if
$\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.
2.2 If one of them is $\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right.$] then output YES and halt.
2.3 If one of them is $\neg\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output NO and halt.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.
2.2 If one of them is $\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right.$] then output YES and halt.
2.3 If one of them is $\neg\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output NO and halt.
2.4 If neither of those happens then go to the next s

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.
2.2 If one of them is $\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output YES and halt.
2.3 If one of them is $\neg\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output NO and halt.
2.4 If neither of those happens then go to the next s

Since we are assuming every true statement is derivable in PA, then this algorithm must terminate and correctly determine if $p\left(x_{1}, \ldots, x_{n}\right)$ has an integer solution.

H10 undecidable implies Godel's Inc. Theorem

We will use PA for concreteness.
Assume, BWOC, that every TRUE ϕ was provable in PA.
The following algorithm solves H 10 , a contradiction.

1. Input $p\left(x_{1}, \ldots, x_{n}\right)$. So we are asking if $\left(\exists a_{1}, \ldots, a_{n}\right)\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right]$ is TRUE.
2. For $s=1$ to infinity
2.1 Find all statements that can be derived in PA using $\leq s$ steps.
2.2 If one of them is $\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output YES and halt.
2.3 If one of them is $\neg\left(\exists x_{1}, \ldots, x_{n}\right)\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right]$ then output NO and halt.
2.4 If neither of those happens then go to the next s

Since we are assuming every true statement is derivable in PA, then this algorithm must terminate and correctly determine if $p\left(x_{1}, \ldots, x_{n}\right)$ has an integer solution. Contradiction!

Variants of H10

$$
\text { 4ロ〉4句 } 1 \text { ㅍ }
$$

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.
Let d be the degree and n be the number of variables.
There is a grid of (d, n) where

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.
Let d be the degree and n be the number of variables.
There is a grid of (d, n) where

1. For small values of $d, n \mathrm{H} 10$ is decidable.

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.
Let d be the degree and n be the number of variables.
There is a grid of (d, n) where

1. For small values of $d, n \mathrm{H} 10$ is decidable.
2. For large values of $d, n \mathrm{H} 10$ is undecidable.

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.
Let d be the degree and n be the number of variables.
There is a grid of (d, n) where

1. For small values of $d, n \mathrm{H} 10$ is decidable.
2. For large values of $d, n \mathrm{H} 10$ is undecidable.
3. There is are many d, n for which this is unknown.

Bound the Degree and the Number of Vars

I covered this last lecture so I will just give the take-away.
Let d be the degree and n be the number of variables.
There is a grid of (d, n) where

1. For small values of $d, n \mathrm{H} 10$ is decidable.
2. For large values of $d, n \mathrm{H} 10$ is undecidable.
3. There is are many d, n for which this is unknown.
4. Resolving the ones that are unknown seems hard.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.
4. $\mathbb{D}=\mathbb{R}$.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.
4. $\mathbb{D}=\mathbb{R}$. Decidable . Tarski-Seidenberg (1974)

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.
4. $\mathbb{D}=\mathbb{R}$. Decidable . Tarski-Seidenberg (1974)
5. $\mathbb{D}=\mathbb{C}$.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.
4. $\mathbb{D}=\mathbb{R}$. Decidable . Tarski-Seidenberg (1974)
5. $\mathbb{D}=\mathbb{C}$. Decidable but trivial: always true.

Different Domain For the Solution

We've been talking about H 10 where we seek a solution in \mathbb{Z}. Let $\mathbb{D} \subseteq \mathbb{C}$. $\mathbf{H} 10$ for \mathbb{D} is the following problem: Given $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ does there exist $a_{1}, \ldots, a_{n} \in \mathbb{D}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?

1. $\mathbb{D}=\mathbb{N}$. Undecidable
2. $\mathbb{D}=\mathbb{Z}$. Undecidable
3. $\mathbb{D}=\mathbb{Q}$. Unknown to Science! Matiyasevich thinks this may be what Hilbert meant to ask and that it would lead to Number Theory of Interest.
4. $\mathbb{D}=\mathbb{R}$. Decidable . Tarski-Seidenberg (1974)
5. $\mathbb{D}=\mathbb{C}$. Decidable but trivial: always true.
6. Other domains: Mostly unknown.

[^0]: 4ロ〉4甸〉4 三〉4 三

