HW02 Solution

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
Q=\{0, \ldots, p q-1\} .
$$

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
\begin{aligned}
Q & =\{0, \ldots, p q-1\} . \\
\Sigma & =\{a\} .
\end{aligned}
$$

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
\begin{aligned}
& Q=\{0, \ldots, p q-1\} . \\
& \Sigma=\{a\} . \\
& s=0 .
\end{aligned}
$$

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
\begin{aligned}
Q & =\{0, \ldots, p q-1\} . \\
\Sigma & =\{a\} . \\
s & =0 .
\end{aligned}
$$

$$
F=\{1, \ldots, p q-1\} .
$$

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
\begin{aligned}
& Q=\{0, \ldots, p q-1\} . \\
& \Sigma=\{a\} . \\
& s=0 . \\
& F=\{1, \ldots, p q-1\} . \\
& \delta(a, i)=i+1(\bmod p q) .
\end{aligned}
$$

Prob 2a: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. DFA

$$
\begin{aligned}
Q & =\{0, \ldots, p q-1\} . \\
\Sigma & =\{a\} . \\
s & =0 .
\end{aligned}
$$

$$
F=\{1, \ldots, p q-1\} .
$$

$$
\delta(a, i)=i+1(\bmod p q) .
$$

Number of States: pq.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.
$Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.
$Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.
Start state is s.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$. $Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.
Start state is s.
$\Delta(s, e)=\left\{s_{0}, t_{0}\right\}$.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.
$Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.
Start state is s.
$\Delta(s, e)=\left\{s_{0}, t_{0}\right\}$.
$\Delta\left(s_{i}, a\right)=s_{i+1}(\bmod p)$.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.
$Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.
Start state is s.
$\Delta(s, e)=\left\{s_{0}, t_{0}\right\}$.
$\Delta\left(s_{i}, a\right)=s_{i+1}(\bmod p)$.
$\Delta\left(t_{i}, a\right)=t_{i+1}(\bmod q)$.

Prob 2b: $L=\left\{a^{i}: i \not \equiv 0(\bmod p q)\right\}$. NFA

Intuition: NFA has e-transitions to a DFA for $\left\{a^{i}: i \not \equiv 0(\bmod p)\right\}$ and $\left\{a^{i}: i \not \equiv 0(\bmod q)\right\}$.
$Q=\{s\} \cup\left\{s_{0}, s_{1}, \ldots, s_{p-1}\right\} \cup\left\{t_{0}, \ldots, t_{q-1}\right\}$.
Start state is s.
$\Delta(s, e)=\left\{s_{0}, t_{0}\right\}$.
$\Delta\left(s_{i}, a\right)=s_{i+1}(\bmod p)$.
$\Delta\left(t_{i}, a\right)=t_{i+1}(\bmod q)$.
Number of States: $p+q+1$.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.
Need DFA accept if a sq numb of the primes divide n.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.
Need DFA accept if a sq numb of the primes divide n.
$Q=\left\{0, \ldots, p_{1}-1\right\} \times \cdots \times\left\{0, \ldots, p_{k}-1\right\}$.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.
Need DFA accept if a sq numb of the primes divide n.
$Q=\left\{0, \ldots, p_{1}-1\right\} \times \cdots \times\left\{0, \ldots, p_{k}-1\right\}$.
$s=(0,0, \ldots, 0)$.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.
Need DFA accept if a sq numb of the primes divide n.
$Q=\left\{0, \ldots, p_{1}-1\right\} \times \cdots \times\left\{0, \ldots, p_{k}-1\right\}$.
$s=(0,0, \ldots, 0)$.
$\delta\left(\left(i_{1}, \ldots, i_{k}\right), a\right)=\left(i_{1}+1 \quad\left(\bmod p_{1}\right), \ldots, i_{k}+1 \quad\left(\bmod p_{k}\right)\right)$.

Prob 3: $L=\left\{a^{n}: \#\right.$ of $\left.p_{i} \ldots\right\}$

L is the set of all a^{n} such that
The numb of $p \in\{3,5, \ldots, 31\}$ that divides n is a square.
Need DFA to keep track of n 's $\equiv(\bmod p)$ for $p \in\{3,5, \ldots, 31\}$.
Need DFA accept if a sq numb of the primes divide n.
$Q=\left\{0, \ldots, p_{1}-1\right\} \times \cdots \times\left\{0, \ldots, p_{k}-1\right\}$.
$s=(0,0, \ldots, 0)$.
$\delta\left(\left(i_{1}, \ldots, i_{k}\right), a\right)=\left(i_{1}+1 \quad\left(\bmod p_{1}\right), \ldots, i_{k}+1 \quad\left(\bmod p_{k}\right)\right)$.
$F=\left\{\left(i_{1}, \ldots, i_{k}\right):\right.$ the numb of i 's that are 0 is a square $\}$.

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

Prob 4: L Reg $\Longrightarrow L^{R}$ Reg

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}.

Prob 4: L Reg $\Longrightarrow L^{R}$ Reg

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}. Intuition: Reverse arrows, old start state is new final state.

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}. Intuition: Reverse arrows, old start state is new final state. Start State: New Start st has e-trans to all old final sts.

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}.
Intuition: Reverse arrows, old start state is new final state.
Start State: New Start st has e-trans to all old final sts.
$M^{R}=\left(Q \cup\left\{s^{\prime}\right\}, \Sigma \cup\{e\}, \Delta, s^{\prime},\{s\}\right) s^{\prime} \notin Q$.

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}.
Intuition: Reverse arrows, old start state is new final state.
Start State: New Start st has e-trans to all old final sts.
$M^{R}=\left(Q \cup\left\{s^{\prime}\right\}, \Sigma \cup\{e\}, \Delta, s^{\prime},\{s\}\right) s^{\prime} \notin Q$.
$\forall p \in Q, \sigma \in \Sigma, \Delta(p, \sigma)=\{q \in Q: \delta(q, \sigma)=p\}$

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}.
Intuition: Reverse arrows, old start state is new final state.
Start State: New Start st has e-trans to all old final sts.
$M^{R}=\left(Q \cup\left\{s^{\prime}\right\}, \Sigma \cup\{e\}, \Delta, s^{\prime},\{s\}\right) s^{\prime} \notin Q$.
$\forall p \in Q, \sigma \in \Sigma, \Delta(p, \sigma)=\{q \in Q: \delta(q, \sigma)=p\}$
$\Delta\left(s^{\prime}, e\right)=F$

Prob 4: L Reg $\Longrightarrow L^{R} \operatorname{Reg}$

L Reg via DFA $M=(Q, \Sigma, \delta, s, F)$. We do M^{R} NFA for L^{R}.
Intuition: Reverse arrows, old start state is new final state.
Start State: New Start st has e-trans to all old final sts.
$M^{R}=\left(Q \cup\left\{s^{\prime}\right\}, \Sigma \cup\{e\}, \Delta, s^{\prime},\{s\}\right) s^{\prime} \notin Q$.
$\forall p \in Q, \sigma \in \Sigma, \Delta(p, \sigma)=\{q \in Q: \delta(q, \sigma)=p\}$
$\Delta\left(s^{\prime}, e\right)=F$
Intuition \exists path $p \rightarrow q$ in $M \Longrightarrow \exists$ path $q \rightarrow p$ in M^{R}.

Prob 4: L Reg $\Longrightarrow L^{R}$ Reg. Example

DFA for L :

Prob 4: L Reg $\Longrightarrow L^{R}$ Reg. Example

DFA for L :

NFA for L^{R} :

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is PRIME.

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is PRIME.
Show that If L is Sam-Reg than L is regular.
L be SAM-regular using NFA $(Q, \Sigma, \Delta, s, F)$. We construct a
DFA for L.

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is PRIME.
Show that If L is Sam-Reg than L is regular.
L be SAM-regular using NFA $(Q, \Sigma, \Delta, s, F)$. We construct a
DFA for L.
Do the subset construction to obtain DFA
$M^{\prime}=\left(2^{Q}, \Sigma, \delta, s, F^{\prime}\right)$

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is PRIME.
Show that If L is Sam-Reg than L is regular.
L be SAM-regular using NFA $(Q, \Sigma, \Delta, s, F)$. We construct a
DFA for L.
Do the subset construction to obtain DFA
$M^{\prime}=\left(2^{Q}, \Sigma, \delta, s, F^{\prime}\right)$
Recall $M^{\prime}(x)$ is set of states x could be in if we ran $M(x)$.

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is PRIME.
Show that If L is Sam-Reg than L is regular.
L be SAM-regular using NFA $(Q, \Sigma, \Delta, s, F)$. We construct a
DFA for L.
Do the subset construction to obtain DFA
$M^{\prime}=\left(2^{Q}, \Sigma, \delta, s, F^{\prime}\right)$
Recall $M^{\prime}(x)$ is set of states x could be in if we ran $M(x)$.
Recall In the usual construction

$$
F^{\prime}=\{A \subseteq Q: A \cap F \neq \emptyset\}
$$

Prob 5: Sam-Reg

L is Sam-Reg if \exists NFA M, no e-transitions:
$x \in L$ iff $M(x)$ run: numb of poss final states it ends in is
PRIME.
Show that If L is Sam-Reg than L is regular.
L be SAM-regular using NFA $(Q, \Sigma, \Delta, s, F)$. We construct a
DFA for L.
Do the subset construction to obtain DFA
$M^{\prime}=\left(2^{Q}, \Sigma, \delta, s, F^{\prime}\right)$
Recall $M^{\prime}(x)$ is set of states x could be in if we ran $M(x)$.
Recall In the usual construction

$$
F^{\prime}=\{A \subseteq Q: A \cap F \neq \emptyset\}
$$

Our F^{\prime}

$$
F^{\prime}=\{A \subseteq Q:|A \cap F| \text { is prime }\}
$$

