HW03 Solution

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.
$\delta(i, a)=i+1$ if $1 \leq i \leq 999$.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.

$$
\begin{aligned}
& \delta(s, a)=1 . \\
& \delta(i, a)=i+1 \text { if } 1 \leq i \leq 999 . \\
& \delta(1000, a)=d .
\end{aligned}
$$

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.

$$
\begin{aligned}
& \delta(s, a)=1 . \\
& \delta(i, a)=i+1 \text { if } 1 \leq i \leq 999 . \\
& \delta(1000, a)=d . \\
& \delta(d, a)=d .
\end{aligned}
$$

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.
$\delta(i, a)=i+1$ if $1 \leq i \leq 999$.
$\delta(1000, a)=d$.
$\delta(d, a)=d$.
$F=Q-\{1000\}$.

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.
$\delta(i, a)=i+1$ if $1 \leq i \leq 999$.
$\delta(1000, a)=d$.
$\delta(d, a)=d$.
$F=Q-\{1000\}$.
Note that d is the opposite of a dump state- YES strings get trapped there, but they are HAPPY! They are accepted!

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.
$\delta(i, a)=i+1$ if $1 \leq i \leq 999$.
$\delta(1000, a)=d$.
$\delta(d, a)=d$.
$F=Q-\{1000\}$.
Note that d is the opposite of a dump state- YES strings get trapped there, but they are HAPPY! They are accepted!
Vote Is there a DFA with ≤ 1001 states?

Prob 2: $L=\left\{a^{i}: i \neq 1000\right\}$. DFA

I'll do a transition table for it. There are 1002 states.
$Q=\{s\} \cup\{1, \ldots, 1000\} \cup\{d\}$.
s is the start state.
If $1 \leq i \leq 1000$ then state i means you have see a^{i}.
d is a trap state for a^{i} where $i>1000$. It is final.
$\delta(s, a)=1$.
$\delta(i, a)=i+1$ if $1 \leq i \leq 999$.
$\delta(1000, a)=d$.
$\delta(d, a)=d$.
$F=Q-\{1000\}$.
Note that d is the opposite of a dump state- YES strings get trapped there, but they are HAPPY! They are accepted!
Vote Is there a DFA with ≤ 1001 states? NO.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n} $x=10, y=11 . x y-x-y=110-10-11=89$. $\max (x, y)=1111$ states. Shortcut at 10.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10 .
By Chicken McNugget Theorem++

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10.
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10.
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10.
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.
- For all $z \geq 90, x$ CAN be expressed as $10 x+11 y$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10 .
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.
- For all $z \geq 90, x$ CAN be expressed as $10 x+11 y$.
- For all $z \geq 101, x$ CAN be expressed as $10 x+11 y+11$.

Using the Loop:

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10.
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.
- For all $z \geq 90, x$ CAN be expressed as $10 x+11 y$.
- For all $z \geq 101, x$ CAN be expressed as $10 x+11 y+11$.

Using the Loop:
From start state have chain of 11 states to 0 -state of Mod-11 loop with shortcut at 10 .

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10.
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.
- For all $z \geq 90, x$ CAN be expressed as $10 x+11 y$.
- For all $z \geq 101, x$ CAN be expressed as $10 x+11 y+11$.

Using the Loop:
From start state have chain of 11 states to 0 -state of Mod-11 loop with shortcut at 10.
Make 0-state of Mod-11 loop a final state.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 1-Big Loop

Need x, y rel primes s.t. $x y-x-y<100$ but close.
Question From Students How do we find x, y ?
Guesswork Note that x, y will be close \sqrt{n}
$x=10, y=11 . x y-x-y=110-10-11=89$.
$\max (x, y)=1111$ states. Shortcut at 10 .
By Chicken McNugget Theorem++

- 89 CANNOT be expressed as $10 x+11 y$.
- 100 CANNOT be expressed as $10 x+11 y+11$.
- For all $z \geq 90, x$ CAN be expressed as $10 x+11 y$.
- For all $z \geq 101, x$ CAN be expressed as $10 x+11 y+11$.

Using the Loop:
From start state have chain of 11 states to 0 -state of Mod-11 loop with shortcut at 10 .
Make 0-state of Mod-11 loop a final state.
This final state accepts a^{i} iff $(\exists x, y \in \mathbb{N})[i=10 x+11 y+11]$ iff $i \geq 101$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.
In this case thats $\{2,3,5,7\}$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.
In this case thats $\{2,3,5,7\}$.
Mod-2 loop acc iff $i \not \equiv 0(\bmod 2) .(100 \equiv 0(\bmod 2)$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100. Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.
In this case thats $\{2,3,5,7\}$.
Mod-2 loop acc iff $i \not \equiv 0(\bmod 2) .(100 \equiv 0(\bmod 2)$.
Mod-3 loop acc iff $i \not \equiv 1(\bmod 3) .(100 \equiv 1(\bmod 3)$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.
In this case thats $\{2,3,5,7\}$.
Mod-2 loop acc iff $i \not \equiv 0(\bmod 2) .(100 \equiv 0(\bmod 2)$.
Mod-3 loop acc iff $i \not \equiv 1(\bmod 3) .(100 \equiv 1(\bmod 3)$.
Mod-5 loop acc iff $i \not \equiv 0(\bmod 5) .(100 \equiv 0(\bmod 5)$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$. NFA. Part 2-Primes

Primes Will need a set of primes whose product is ≥ 100.
Question by Students How to pick primes?
I try $2,3,5, \ldots$ until the product is ≥ 100.
In this case thats $\{2,3,5,7\}$.
Mod-2 loop acc iff $i \not \equiv 0(\bmod 2) .(100 \equiv 0(\bmod 2)$.
Mod-3 loop acc iff $i \not \equiv 1(\bmod 3) .(100 \equiv 1(\bmod 3)$.
Mod-5 loop acc iff $i \not \equiv 0(\bmod 5) .(100 \equiv 0(\bmod 5)$.
Mod-7 loop acc iff $i \not \equiv 2(\bmod 5) .(100 \equiv 2(\bmod 7)$.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has
Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

NFA has

1. s-chain of length 11 -Mod 11 with Shortcut at 10 .

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10.
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10.
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10.
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

NFA has $1+11+11+2+3+5+7=40$ states.

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

NFA has

1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a ${ }^{100}$.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

NFA has $1+11+11+2+3+5+7=40$ states.

1) Can we do better? Yes. No Chain, diff primes. Discuss!

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

 NFA has1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

NFA has $1+11+11+2+3+5+7=40$ states.

1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a^{i} with $i \leq 99$. Mod NFA's accepts SOME a^{i} with $e \geq 101$. Can we use that to get a smaller machine?

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

NFA has

1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

NFA has $1+11+11+2+3+5+7=40$ states.

1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a^{i} with $i \leq 99$. Mod NFA's accepts SOME a^{i} with $e \geq 101$. Can we use that to get a smaller machine? VOTE
YES- and this is known
NO- and it is known that this can't help UNKNOWN TO BILL

Prob 3: $L=\left\{a^{i}: i \neq 100\right\}$ Part 3-Combine

NFA has

1. s-chain of length 11 -Mod 11 with Shortcut at 10 .
2. s-e-trans to Mod-2 DFA, Mod-3 DFA, Mod-5 DFA, Mod-7 DFA.

- If $i \geq 101$ then big-Loop NFA will accept it.
- The big-Loop DOES NOT accept a^{100}.
- If $i \leq 99$ then one of the Mod Machines will accept it.
- None of the Mod Machines accept a^{100}.

NFA has $1+11+11+2+3+5+7=40$ states.

1) Can we do better? Yes. No Chain, diff primes. Discuss!
2) Loop NFA accepts SOME a^{i} with $i \leq 99$. Mod NFA's accepts SOME a^{i} with $e \geq 101$. Can we use that to get a smaller machine? VOTE
YES- and this is known
NO- and it is known that this can't help
UNKNOWN TO BILL UNKNOWN TO BILL

Prob 4a: Regex for $\left\{a^{100}\right\}$

aa...a (100 a's)

Prob 4a: Regex for $\left\{a^{100}\right\}$

aa...a (100 a's)
Length 100.

Prob 4a: Regex for $\left\{a^{100}\right\}$

aa...a (100 a's)
Length 100.
Is there a shorter regex?

Prob 4a: Regex for $\left\{a^{100}\right\}$

aa...a (100 a's)
Length 100.
Is there a shorter regex? NO.

Prob 4b: Textbook Regex for $\left\{a^{100}\right\}$

Convention We take $\lceil\lg (x)\rceil$ to be the length of the binary number x. This is not quite right but we don't care. The main point is that Textbook Regex's are much shorter. We leave off the ceiling sign.

Prob 4b: Textbook Regex for $\left\{a^{100}\right\}$

Convention We take $\lceil\lg (x)\rceil$ to be the length of the binary number x. This is not quite right but we don't care. The main point is that Textbook Regex's are much shorter. We leave off the ceiling sign.
a^{100}.

Prob 4b: Textbook Regex for $\left\{a^{100}\right\}$

Convention We take $\lceil\lg (x)\rceil$ to be the length of the binary number x. This is not quite right but we don't care. The main point is that Textbook Regex's are much shorter. We leave off the ceiling sign.
a^{100}.
Length $\lg (100)=7$.

Prob 4b: Textbook Regex for $\left\{a^{100}\right\}$

Convention We take $\lceil\lg (x)\rceil$ to be the length of the binary number x. This is not quite right but we don't care. The main point is that Textbook Regex's are much shorter. We leave off the ceiling sign.
a^{100}.
Length $\lg (100)=7$.
Is there a shorter Textbook Regex?

Prob 4b: Textbook Regex for $\left\{a^{100}\right\}$

Convention We take $\lceil\lg (x)\rceil$ to be the length of the binary number x. This is not quite right but we don't care. The main point is that Textbook Regex's are much shorter. We leave off the ceiling sign.
a^{100}.
Length $\lg (100)=7$.
Is there a shorter Textbook Regex? NO.

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$

$$
\{a\} \cup\{a a\} \cup \cdots \cup\{a a \cdots a\} \cup a \cdots a a^{*}
$$

(The second \cdots is 99 a's. The third is 101 a's.)

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$

$$
\{a\} \cup\{a a\} \cup \cdots \cup\{a a \cdots a\} \cup a \cdots a a^{*}
$$

(The second . . . is 99 a's. The third is 101 a's.)
Is there a shorter Regex for $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{i} \neq \mathbf{1 0 0 \}}\right.$?
Vote
YES
NO
UNKNOWN TO BILL

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$

$$
\{a\} \cup\{a a\} \cup \cdots \cup\{a a \cdots a\} \cup a \cdots a a^{*}
$$

(The second . . is 99 a's. The third is 101 a's.)
Is there a shorter Regex for $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{i} \neq \mathbf{1 0 0}\right\}$?
Vote
YES
NO
UNKNOWN TO BILL
See Next Page.

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem ++ with 13, 9 to get

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem ++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem ++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem ++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
\text { aaaaa }\left(a a a a a a a a, ~ \cup \text { aaaaaaaaaaaaa) }{ }^{*}\right.
$$

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
\text { aaaaa }(\text { aаaаaaaaa } \cup \text { aaaaaaaaaaaaa })^{*}
$$

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7 .

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
\text { aаaаa }(\text { aаааааааа } \cup \text { aаааааааааааа) })^{*}
$$

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7 . Mod-2: $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $(a a)^{*}$. Length: 3

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
\text { aaaaa }(\text { aaaaaaaaa } \cup \text { aaaaaaaaaaaaa })^{*}
$$

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7 . Mod-2: $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $(a a)^{*}$. Length: 3
Mod-3: $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\{e, a a\}^{*}(a a a)^{*}$. Length: 7

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem ++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
\text { aaaaa }(\text { aaaaaaaaa } \cup \text { aaaaaaaaaaaaa) })^{*}
$$

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7 . Mod-2: $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $(a a)^{*}$. Length: 3
Mod-3: $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\{e, a a\}^{*}(a a a)^{*}$. Length: 7 Mod-5: $\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\}$ is $\{a, a a$, aaa, aaaa $\}(a a a a a)^{*}$. Length: 16

Prob 4c: Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

Use Chicken McNugget Theorem++ with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

Regex Length: $5+9+13=27$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod 2, 3, 5, 7 . Mod-2: $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $(a a)^{*}$. Length: 3
Mod-3: $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\{e, a a\}^{*}(a a a)^{*}$. Length: 7
Mod-5: $\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\}$ is $\{a, a a$, aaa, aaaa $\}(a a a a a)^{*}$.
Length: 16
Mod-7: $\left\{a^{i}: i \not \equiv 2(\bmod 7)\right\}$ is $\{e$, a, aaa, aaaa, aaaaa, aaaaaa $\}$ (aaaaaaa)*: 28 .
Total Length: $27+3+7+16+28=81$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod $2,3,5,7$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod $2,3,5,7$. Mod-2 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $\left(a^{2}\right)^{*}$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod $2,3,5,7$. Mod-2 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $\left(a^{2}\right)^{*}$. Mod-3 regex for $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\left\{e, a^{2}\right\}^{*}\left(a^{2}\right)^{*}$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod $2,3,5,7$. Mod-2 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $\left(a^{2}\right)^{*}$. Mod-3 regex for $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\left\{e, a^{2}\right\}^{*}\left(a^{2}\right)^{*}$. Mod-5 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\}$ is $\left\{a, a^{2}, a^{3}, a^{4}\right\}\left(a^{5}\right)^{*}$.

Prob 4c: Text Regex For $\left\{a^{i}: i \neq 100\right\}$ Shorter

We leave the actual lengths to you, but note they are much shorter.
Use Chicken McNugget Theorem with 13, 9 to get 100 CANNOT be written as $13 x+9 y+5$.
Any $i \geq 101$ CAN be written as $13 x+9 y+5$.

$$
a^{5}\left(a^{9} \cup a^{13}\right)^{*}
$$

Regex Length: $\lg (5)+\lg (9)+\lg (13)+1=3+4+4+1=12$.
This regex generates every a^{i} with $i \geq 101$.
We need a regex for the smaller strings. We use mod $2,3,5,7$. Mod-2 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$ is $\left(a^{2}\right)^{*}$.
Mod-3 regex for $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$ is $\left\{e, a^{2}\right\}^{*}\left(a^{2}\right)^{*}$.
Mod-5 regex for $\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\}$ is $\left\{a, a^{2}, a^{3}, a^{4}\right\}\left(a^{5}\right)^{*}$.
Mod-7 regex for $\left\{a^{i}: i \not \equiv 2(\bmod 7)\right\}$ is $\{e, ~ a, ~ a a a, ~ a a a a, ~ a a a a a, ~ a а a a a a\}(a a a a a a a) *: ~$

Prob 5: Regex for....

$L=\left\{w: \#_{a}(w) \equiv 17 \quad(\bmod 102) \wedge \#_{b}(w) \equiv 10 \quad(\bmod 91)\right\}$.
Want regex for L. How can I obtain one?

Prob 5: Regex for....

$$
L=\left\{w: \#_{a}(w) \equiv 17 \quad(\bmod 102) \wedge \#_{b}(w) \equiv 10 \quad(\bmod 91)\right\}
$$

Want regex for L. How can I obtain one?

1. Create a DFA M for L. It will be easy and have $102 \times 91=9282$.

Prob 5: Regex for....

$$
L=\left\{w: \#_{a}(w) \equiv 17 \quad(\bmod 102) \wedge \#_{b}(w) \equiv 10 \quad(\bmod 91)\right\}
$$

Want regex for L. How can I obtain one?

1. Create a DFA M for L. It will be easy and have $102 \times 91=9282$.
2. Use the $R(i, j, k)$ construction on DFA M.
