HW04 Solution

$$
4 \text { ロ } 4 \text { 岛 }>4 \text { 三 }
$$

Prob 2a: $L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}$

REGULAR

Prob 2a: $L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}$

REGULAR

$$
L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}=\left\{a^{2 n}: n \geq 1000\right\}
$$

Prob 2a: $L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}$

REGULAR

$$
L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}=\left\{a^{2 n}: n \geq 1000\right\}
$$

All even-length strings of a's of length at least 2000.

Prob 2a: $L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}$

REGULAR

$$
L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}=\left\{a^{2 n}: n \geq 1000\right\}
$$

All even-length strings of a's of length at least 2000. Here is a Textbook Regex for it:

Prob 2a: $L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}$

REGULAR

$$
L_{1}=\left\{a^{n} a^{n}: n \geq 1000\right\}=\left\{a^{2 n}: n \geq 1000\right\}
$$

All even-length strings of a's of length at least 2000. Here is a Textbook Regex for it:

$$
a^{2000} a^{*}
$$

Prob 2b: $L_{2}=\left\{a^{n} a^{n}: n \leq 1000\right\}$

REGULAR

Prob 2b: $L_{2}=\left\{a^{n} a^{n}: n \leq 1000\right\}$

REGULAR

This is a finite set.

Prob 2b: $L_{2}=\left\{a^{n} a^{n}: n \leq 1000\right\}$

REGULAR

This is a finite set.
Here is a Textbook Regex for it:

$$
\{e\} \cup\left\{a^{2}\right\} \cup\left\{a^{4}\right\} \cup \cdots \cup\left\{a^{2000}\right\} .
$$

Prob 2c: $L_{3}=\left\{a^{\left\lfloor\log _{2}(n)\right\rfloor}: n \geq 1\right\}$

REGULAR

Prob 2c: $L_{3}=\left\{a^{\left[\log _{2}(n)\right\rfloor}: n \geq 1\right\}$

REGULAR
This is just a^{*}.

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR
We give both an regex for it and a DFA for it.

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR

We give both an regex for it and a DFA for it.
Regex Note that you have an $a b$ in the string when the current letter switches from a to b, and a $b a$ in the string when the current letter switches from $b a$.

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR

We give both an regex for it and a DFA for it.
Regex Note that you have an $a b$ in the string when the current letter switches from a to b, and a $b a$ in the string when the current letter switches from $b a$.
Thus, a string is in L_{4} iff it starts and ends with the same letter.

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR

We give both an regex for it and a DFA for it.
Regex Note that you have an $a b$ in the string when the current letter switches from a to b, and a $b a$ in the string when the current letter switches from $b a$.
Thus, a string is in L_{4} iff it starts and ends with the same letter.
Here is a regex for it:

$$
\{e, a, b\} \cup a \Sigma^{*} a \cup b \Sigma^{*} b
$$

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

REGULAR

We give both an regex for it and a DFA for it.
Regex Note that you have an $a b$ in the string when the current letter switches from a to b, and a $b a$ in the string when the current letter switches from $b a$.
Thus, a string is in L_{4} iff it starts and ends with the same letter.
Here is a regex for it:

$$
\{e, a, b\} \cup a \Sigma^{*} a \cup b \Sigma^{*} b
$$

DFA on Next Page

Prob 2d: $L_{4}=\left\{w: \#_{a b}(w)=\#_{b a}(w)\right\}$

 DFA:

Figure: DFA for L_{4}

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{2 n-n_{1}-n_{2}} b^{n}$.

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{2 n-n_{1}-n_{2}} b^{n}$.
By the PL $x y y z \in L_{5}$. But

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{2 n-n_{1}-n_{2}} b^{n}$.
By the PL $x y y z \in L_{5}$. But
$x y y z=a^{n_{1}+2 n_{2}+2 n-n_{1}-n_{2}} b^{n}=a^{2 n+n_{2}} b^{n}$.

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{2 n-n_{1}-n_{2}} b^{n}$.
By the PL $x y y z \in L_{5}$. But
$x y y z=a^{n_{1}+2 n_{2}+2 n-n_{1}-n_{2}} b^{n}=a^{2 n+n_{2}} b^{n}$.
Since $n_{2} \neq 0,2 n+n_{2}>2 n$. So this string IS NOT in L_{5}.

Prob 3a: $L_{5}=\left\{w: \#_{a}(w)=2 \#_{b}(w)\right\}$

Let $a^{2 n} b^{n}$ be a long string in L_{5}.
Long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{2 n-n_{1}-n_{2}} b^{n}$.
By the PL $x y y z \in L_{5}$. But
$x y y z=a^{n_{1}+2 n_{2}+2 n-n_{1}-n_{2}} b^{n}=a^{2 n+n_{2}} b^{n}$.
Since $n_{2} \neq 0,2 n+n_{2}>2 n$. So this string IS NOT in L_{5}.
Contradiction.

Prob 3b: $L_{6}=\left\{w: 3 \#_{a}(w)=3 \#_{b}(w)\right\}$

Let $a^{3 n} b^{2 n}$ be a long string in L_{6}.
From this point on the proof is very similar to Part a.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{d n-n_{1}-n_{2}} b^{c n}$.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{d n-n_{1}-n_{2}} b^{c n}$.
By the PL $x y y z \in L_{3}$.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{d n-n_{1}-n_{2}} b^{c n}$.
By the PL $x y y z \in L_{3}$.
$x y y z=a^{n_{1}+2 n_{2}+d n-n_{1}-n_{2}} b^{c n}=a^{d n+n_{2}} b^{c n}$.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{d n-n_{1}-n_{2}} b^{c n}$.
By the PL $x y y z \in L_{3}$.
$x y y z=a^{n_{1}+2 n_{2}+d n-n_{1}-n_{2}} b^{c n}=a^{d n+n_{2}} b^{c n}$.
Since $n_{2} \neq 0, d n+n_{2} \neq d n$, So this string IS NOT in L_{3}.

Prob 3c: $L_{7}=\left\{w: c \#_{a}(w)=d \#_{b}(w)\right\}$

Let $a^{d n} b^{c n}$ be a long string in L_{3}.
Take it long enough so that the PL has all of the a's in $x y$.
$x=a^{n_{1}}$
$y=a^{n_{2}}$ (NOTE: $\left.n_{2} \neq 0\right)$
$z=a^{d n-n_{1}-n_{2}} b^{c n}$.
By the PL $x y y z \in L_{3}$.
$x y y z=a^{n_{1}+2 n_{2}+d n-n_{1}-n_{2}} b^{c n}=a^{d n+n_{2}} b^{c n}$.
Since $n_{2} \neq 0, d n+n_{2} \neq d n$, So this string IS NOT in L_{3}.
Contradiction.

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

$$
\operatorname{ISAAC}(L)=\bigcup_{w \in L} \operatorname{ISAAC}(w)
$$

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

$$
\operatorname{ISAAC}(L)=\bigcup_{w \in L} \operatorname{ISAAC}(w)
$$

For example if $L=\{a b a b, b b b b\}$ then $\operatorname{ISAAC}(L)$ is:

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

$$
\operatorname{ISAAC}(L)=\bigcup_{w \in L} \operatorname{ISAAC}(w)
$$

For example if $L=\{a b a b, b b b b\}$ then $\operatorname{ISAAC}(L)$ is:
$\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, b b b, a b a b, b b b b\}$

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

$$
\operatorname{ISAAC}(L)=\bigcup_{w \in L} \operatorname{ISAAC}(w)
$$

For example if $L=\{a b a b, b b b b\}$ then $\operatorname{ISAAC}(L)$ is:
$\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, b b b, a b a b, b b b b\}$
Show that if L is regular then $\operatorname{ISAAC}(L)$ is regular.

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Definition Let $w \in \Sigma^{*}$. $\operatorname{ISAAC}(w)$ is the set of words formed by removing any set of symbols from w. Example:
$\operatorname{ISAAC}(a b a b)=\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, a b a b\}$
If L is a langauge (a subset of Σ^{*}) then

$$
\operatorname{ISAAC}(L)=\bigcup_{w \in L} \operatorname{ISAAC}(w)
$$

For example if $L=\{a b a b, b b b b\}$ then $\operatorname{ISAAC}(L)$ is:
$\{e, a, b, a a, a b, b a, b b, a a b, a b a, a b b, b a b, b b b, a b a b, b b b b\}$
Show that if L is regular then $\operatorname{ISAAC}(L)$ is regular.
Solution on next slide.

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Intuition If $\delta(p, \sigma)=q$ then also put an e-transition between p and q.

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Intuition If $\delta(p, \sigma)=q$ then also put an e-transition between p and q. Formally We create an NFA for ISAAC(L).

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Intuition If $\delta(p, \sigma)=q$ then also put an e-transition between p and q. Formally We create an NFA for ISAAC(L). $\left(Q, \Sigma, \delta^{\prime}, s, F\right)$.

Prob 4: L Regular \rightarrow ISAAC(L) Regular

Intuition If $\delta(p, \sigma)=q$ then also put an e-transition between p and q.
Formally We create an NFA for ISAAC(L).
$\left(Q, \Sigma, \delta^{\prime}, s, F\right)$.
$\delta(p, \sigma)=\delta(p, \sigma)$.
$\delta(p, e)=\{q:(\exists \sigma \in \Sigma)[\delta(p, \sigma)=q]\}$.

