HW07: Solution to Problem 7

NP in DTIME PROBLEM

Prove $A \in \operatorname{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.

NP in DTIME PROBLEM

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
People did this three ways. I discuss all three.

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that

$$
A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B] .
$$

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.
2. For all $y,|y|=p(n)$ (There are $2^{p(n)}$ of these.)

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.
2. For all $y,|y|=p(n)$ (There are $2^{p(n)}$ of these.)
2.1 Run $M(x, y) \in B$ (this takes time $q(n)$). If YES then output YES and stop. If no then go to next y

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.
2. For all $y,|y|=p(n)$ (There are $2^{p(n)}$ of these.)
2.1 Run $M(x, y) \in B$ (this takes time $q(n)$). If YES then output YES and stop. If no then go to next y
3. (If got here then no y worked.) Output NO and stop.

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.
2. For all $y,|y|=p(n)$ (There are $2^{p(n)}$ of these.)
2.1 Run $M(x, y) \in B$ (this takes time $q(n)$). If YES then output YES and stop. If no then go to next y
3. (If got here then no y worked.) Output NO and stop.

Time: $q(n) \times 2^{p(n)}$.

Use OUR Definition of NP

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
$A \in$ NP: \exists poly p and $B(x, y) \in \mathrm{P}$ via M
(run time for M is $q(|y|)$ where q is a poly)) such that
$A=\{x:(\exists y,|y|=p(|x|))[(x, y) \in B]$.

1. Input $x .|x|=n$.
2. For all $y,|y|=p(n)$ (There are $2^{p(n)}$ of these.)
2.1 Run $M(x, y) \in B$ (this takes time $q(n)$). If YES then output YES and stop. If no then go to next y
3. (If got here then no y worked.) Output NO and stop.

Time: $q(n) \times 2^{p(n)}$.
This is the solution I had in mind.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in N P, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, $A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in \mathrm{NP}, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in \mathrm{NP}, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.
3. Plug into ϕ all $2^{m} \leq 2^{p(n)}$ truth assignments.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in \mathrm{NP}, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.
3. Plug into ϕ all $2^{m} \leq 2^{p(n)}$ truth assignments. If any say YES then output YES.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in \mathrm{NP}, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.
3. Plug into ϕ all $2^{m} \leq 2^{p(n)}$ truth assignments.

If any say YES then output YES.
If none say YES then output NO.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in \mathrm{NP}, A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.
3. Plug into ϕ all $2^{m} \leq 2^{p(n)}$ truth assignments.

If any say YES then output YES.
If none say YES then output NO.
This is not what I had in mind.

Use $A \leq$ SAT

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, $A \leq$ SAT. Assume uses TM M in time $p(|x|)$.

1. Input $x .|x|=n$.
2. Compute $M(x)$. Its a formula $\phi\left(y_{1}, \ldots, x_{m}\right)$ where $m \leq p(n)$.
3. Plug into ϕ all $2^{m} \leq 2^{p(n)}$ truth assignments.

If any say YES then output YES.
If none say YES then output NO.
This is not what I had in mind.
I do not like it since it uses Cook-Levin; however, it is correct.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.
I intentionally avoided ever defining or using Nondet TMs.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.
I intentionally avoided ever defining or using Nondet TMs.
Nondet TM are a bad way to teach NP.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.
I intentionally avoided ever defining or using Nondet TMs.
Nondet TM are a bad way to teach NP.
Quantifiers are a good way to teach NP.

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.
I intentionally avoided ever defining or using Nondet TMs.
Nondet TM are a bad way to teach NP.
Quantifiers are a good way to teach NP.
Some Teachers Disagree

Use Nondeterministic TMs

Prove $A \in \mathrm{NP} \rightarrow \exists$ poly $r: A \in \operatorname{DTIME}\left(O\left(2^{r(n)}\right)\right.$.
Since $A \in$ NP, \exists a poly time Nondet TM for A.
I intentionally avoided ever defining or using Nondet TMs.
Nondet TM are a bad way to teach NP.
Quantifiers are a good way to teach NP.
Some Teachers Disagree They are wrong.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd. Most of the solutions that used it were wrong.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd. Most of the solutions that used it were wrong.

I graded them just based on if the were correct.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd. Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd. Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd. Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.
If so you will get 0 points even if it is correct.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd.
Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.
If so you will get 0 points even if it is correct.
Here is how the proof goes.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd.
Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.
If so you will get 0 points even if it is correct.
Here is how the proof goes.
NOT going to bother.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd.
Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.
If so you will get 0 points even if it is correct.
Here is how the proof goes.
NOT going to bother.
We are busy people.

Use Nondeterministic TMs (cont)

Why did some people do the HW using Nondet TMs?
My Guess ChatGPT:
The class did not cover them, so for a student to use them is odd.
Most of the solutions that used it were wrong.
I graded them just based on if the were correct.
No penalty for ChatGPT except self-imposed.
Do not use Nondet TM's on any later HW or the Final.
If so you will get 0 points even if it is correct.
Here is how the proof goes.
NOT going to bother.
We are busy people.
Not going to waste time on a solution I disapprove of.

