HW08 Solution

$$
4 \square>4 \text { 甸 } \downarrow \text { 引 }
$$

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in \mathrm{NP}$.

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in$ NP. \exists polys p_{1}, p_{2}, sets $B_{1}, B_{1} \in \mathrm{P}$ such that

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in$ NP. \exists polys p_{1}, p_{2}, sets $B_{1}, B_{1} \in \mathrm{P}$ such that

$$
A_{1}=\left\{x:\left(\exists y_{1},\left|y_{1}\right|=p_{1}(|x|)\right)\left[\left(x, y_{1}\right) \in B_{1}\right]\right\}
$$

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in$ NP. \exists polys p_{1}, p_{2}, sets $B_{1}, B_{1} \in \mathrm{P}$ such that

$$
\begin{aligned}
& A_{1}=\left\{x:\left(\exists y_{1},\left|y_{1}\right|=p_{1}(|x|)\right)\left[\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& A_{2}=\left\{x:\left(\exists y_{2},\left|y_{2}\right|=p_{2}(|x|)\right)\left[\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in$ NP. \exists polys p_{1}, p_{2}, sets $B_{1}, B_{1} \in \mathrm{P}$ such that

$$
\begin{aligned}
& A_{1}=\left\{x:\left(\exists y_{1},\left|y_{1}\right|=p_{1}(|x|)\right)\left[\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& A_{2}=\left\{x:\left(\exists y_{2},\left|y_{2}\right|=p_{2}(|x|)\right)\left[\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

$A_{1} \cap A_{2}=\left\{x:\left(\exists y_{1} \$ y_{2},\left|y_{1}\right|=p_{1}(|x|),\left|y_{2}\right|=p_{2}(|x|)\right)\right.$

$$
\left.\left[\left(x, y_{1}\right) \in B_{1} \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
$$

Show NP is Closed Under Intersection

Let $A_{1}, A_{2} \in$ NP. \exists polys p_{1}, p_{2}, sets $B_{1}, B_{1} \in \mathrm{P}$ such that

$$
\begin{aligned}
& A_{1}=\left\{x:\left(\exists y_{1},\left|y_{1}\right|=p_{1}(|x|)\right)\left[\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& A_{2}=\left\{x:\left(\exists y_{2},\left|y_{2}\right|=p_{2}(|x|)\right)\left[\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

$A_{1} \cap A_{2}=\left\{x:\left(\exists y_{1} \$ y_{2},\left|y_{1}\right|=p_{1}(|x|),\left|y_{2}\right|=p_{2}(|x|)\right)\right.$

$$
\left.\left[\left(x, y_{1}\right) \in B_{1} \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
$$

Cook-Levin With Funky TM: $\delta(q, a)=(p, b, L)$

Cook-Levin With Funky TM: $\delta(q, a)=(p, b, L)$

σ	(q, a)

Cook-Levin With Funky TM: $\delta(q, a)=(p, b, L)$

σ	(q, a)
(p, σ)	b

Cook-Levin With Funky TM: $\delta(q, a)=(p, b, L)$

σ	(q, a)
(p, σ)	b

$$
\bigwedge_{\sigma \in \Sigma}
$$

Cook-Levin With Funky TM: $\delta(q, a)=(p, b, L)$

σ	(q, a)
(p, σ)	b

$$
\bigwedge_{\sigma \in \Sigma}
$$

$$
\left(z_{i, j, \sigma} \wedge z_{i, j+1,(q, a)}\right) \rightarrow\left(z_{i+1, j,(p, \sigma)} \wedge z_{i+1, j+1,(p, b)}\right)
$$

Question About Quantified Set

$a, b \in \mathbb{N}, a, b \geq 2$.
Let B be solvable in time $2^{L^{b}}$. L is the length of the longer of the the inputs.

Question About Quantified Set

$a, b \in \mathbb{N}, a, b \geq 2$.
Let B be solvable in time $2^{L^{b}}$. L is the length of the longer of the the inputs.
Let

$$
A=\left\{x:\left(\exists y,|y|=|x|^{a}\right)[(x, y) \in B] .\right.
$$

Give an algorithm that determines if $x \in A$.

Question About Quantified Set

$a, b \in \mathbb{N}, a, b \geq 2$.
Let B be solvable in time $2^{L^{b}}$. L is the length of the longer of the the inputs.
Let

$$
A=\left\{x:\left(\exists y,|y|=|x|^{a}\right)[(x, y) \in B] .\right.
$$

Give an algorithm that determines if $x \in A$.
Give $T(n)$, the time bound on the algorithm for inputs of length n.

Question About Quantified Set

$a, b \in \mathbb{N}, a, b \geq 2$.
Let B be solvable in time $2^{L^{b}}$. L is the length of the longer of the the inputs.
Let

$$
A=\left\{x:\left(\exists y,|y|=|x|^{a}\right)[(x, y) \in B] .\right.
$$

Give an algorithm that determines if $x \in A$.
Give $T(n)$, the time bound on the algorithm for inputs of length n. $T(n)$ should be of the form $2^{O\left(n^{c}\right)}$ for a c that depends on a, b.

Answer About Quantified Set

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$
2.1 Determine $(x, y) \in B$. This takes time $2^{\left(O\left(n^{a}\right)\right)^{b}}=2^{O\left(n^{a b}\right)}$.

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$
2.1 Determine $(x, y) \in B$. This takes time $2^{\left(O\left(n^{a}\right)\right)^{b}}=2^{O\left(n^{a b}\right)}$.
2.2 If YES then output YES and stop.

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$
2.1 Determine $(x, y) \in B$. This takes time $2^{\left(O\left(n^{a}\right)\right)^{b}}=2^{O\left(n^{a b}\right)}$.
2.2 If YES then output YES and stop.
3. (If you got here then no such y was found.) Output NO.

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$
2.1 Determine $(x, y) \in B$. This takes time $2^{\left(O\left(n^{a}\right)\right)^{b}}=2^{O\left(n^{a b}\right)}$.
2.2 If YES then output YES and stop.
3. (If you got here then no such y was found.) Output NO.

In the worst case the loop goes through $2^{n^{a}}$ iterations, and each one takes time $2^{O\left(n^{a b}\right)}$, hence

Answer About Quantified Set

Intuition: Algorithm goes through ALL y of length $|x|^{a}$.

1. Input x. Let $n=|x|$.
2. For all $y,|y|=n^{a}$
2.1 Determine $(x, y) \in B$. This takes time $2^{\left(O\left(n^{a}\right)\right)^{b}}=2^{O\left(n^{a b}\right)}$.
2.2 If YES then output YES and stop.
3. (If you got here then no such y was found.) Output NO.

In the worst case the loop goes through $2^{n^{a}}$ iterations, and each one takes time $2^{O\left(n^{a b}\right)}$, hence $T(n)=2^{n^{a}} \times 2^{O\left(n^{a b}\right)}=2^{O\left(n^{a b}\right)}$.

