HW08 Solution

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Let $A_1, A_2 \in NP$.

Let $A_1, A_2 \in \mathrm{NP}$. \exists polys p_1 , p_2 , sets $B_1, B_1 \in \mathrm{P}$ such that

Let $A_1, A_2 \in \text{NP.} \exists$ polys p_1, p_2 , sets $B_1, B_1 \in \text{P}$ such that

 $A_1 = \{x : (\exists y_1, |y_1| = p_1(|x|))[(x, y_1) \in B_1]\}$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let $A_1, A_2 \in \mathrm{NP}$. \exists polys p_1 , p_2 , sets $B_1, B_1 \in \mathrm{P}$ such that

$$A_1 = \{x : (\exists y_1, |y_1| = p_1(|x|)) [(x, y_1) \in B_1]\}$$

$$A_2 = \{x : (\exists y_2, |y_2| = p_2(|x|))[(x, y_2) \in B_2]\}$$

Let $A_1, A_2 \in \mathrm{NP}$. \exists polys p_1 , p_2 , sets $B_1, B_1 \in \mathrm{P}$ such that

$$A_1 = \{x : (\exists y_1, |y_1| = p_1(|x|))[(x, y_1) \in B_1]\}$$

$$A_{2} = \{x : (\exists y_{2}, |y_{2}| = p_{2}(|x|))[(x, y_{2}) \in B_{2}]\}$$
$$A_{1} \cap A_{2} = \{x : (\exists y_{1} \$ y_{2}, |y_{1}| = p_{1}(|x|), |y_{2}| = p_{2}(|x|))$$
$$[(x, y_{1}) \in B_{1} \land (x, y_{2}) \in B_{2}]\}$$

Let $A_1, A_2 \in \mathrm{NP}$. \exists polys p_1 , p_2 , sets $B_1, B_1 \in \mathrm{P}$ such that

$$A_1 = \{x : (\exists y_1, |y_1| = p_1(|x|))[(x, y_1) \in B_1]\}$$

$$A_{2} = \{x : (\exists y_{2}, |y_{2}| = p_{2}(|x|))[(x, y_{2}) \in B_{2}]\}$$
$$A_{1} \cap A_{2} = \{x : (\exists y_{1} \$ y_{2}, |y_{1}| = p_{1}(|x|), |y_{2}| = p_{2}(|x|))$$
$$[(x, y_{1}) \in B_{1} \land (x, y_{2}) \in B_{2}]\}$$

σ	(q, a)
(p,σ)	b

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

σ	(q, a)	
(p,σ)	b	

Λ		
1	١	
$\sigma \in \Sigma$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

σ	(q, a)
(p,σ)	b

$$\bigwedge_{\sigma\in\Sigma}$$

 $(z_{i,j,\sigma} \land z_{i,j+1,(q,a)}) \rightarrow (z_{i+1,j,(p,\sigma)} \land z_{i+1,j+1,(p,b)})$

 $a, b \in \mathbb{N}$, $a, b \ge 2$. Let *B* be solvable in time 2^{L^b} . *L* is the length of the longer of the the inputs.

(ロト (個) (E) (E) (E) (E) のへの

 $a, b \in \mathbb{N}$, $a, b \ge 2$. Let *B* be solvable in time 2^{L^b} . *L* is the length of the longer of the the inputs. Let

$$A = \{x : (\exists y, |y| = |x|^a) [(x, y) \in B].$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Give an algorithm that determines if $x \in A$.

 $a, b \in \mathbb{N}$, $a, b \ge 2$. Let *B* be solvable in time 2^{L^b} . *L* is the length of the longer of the the inputs. Let

$$A = \{x : (\exists y, |y| = |x|^a) [(x, y) \in B].$$

Give an algorithm that determines if $x \in A$. Give T(n), the time bound on the algorithm for inputs of length n.

*ロト *目 * * * * * * * * * * * * * * *

 $a, b \in \mathbb{N}$, $a, b \ge 2$. Let *B* be solvable in time 2^{L^b} . *L* is the length of the longer of the the inputs. Let

$$A = \{x : (\exists y, |y| = |x|^a) [(x, y) \in B].$$

Give an algorithm that determines if $x \in A$. Give T(n), the time bound on the algorithm for inputs of length n. T(n) should be of the form $2^{O(n^c)}$ for a c that depends on a, b.

<ロ> < 個> < 国> < 国> < 国> < 国</p>

Intuition: Algorithm goes through ALL y of length $|x|^a$.

Intuition: Algorithm goes through ALL y of length $|x|^a$.

1. Input *x*. Let n = |x|.

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$

2.1 Determine $(x, y) \in B$. This takes time $2^{(O(n^a))^b} = 2^{O(n^{ab})}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$
 - 2.1 Determine $(x, y) \in B$. This takes time $2^{(O(n^a))^b} = 2^{O(n^{ab})}$.

2.2 If YES then output YES and stop.

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$
 - 2.1 Determine $(x, y) \in B$. This takes time $2^{(O(n^a))^b} = 2^{O(n^{ab})}$.

- 2.2 If YES then output YES and stop.
- 3. (If you got here then no such y was found.) Output NO.

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$
 - 2.1 Determine $(x, y) \in B$. This takes time $2^{(O(n^a))^b} = 2^{O(n^{ab})}$.

2.2 If YES then output YES and stop.

3. (If you got here then no such y was found.) Output NO. In the worst case the loop goes through 2^{n^a} iterations, and each one takes time $2^{O(n^{ab})}$, hence

ション ふぼう メリン メリン しょうくしゃ

Intuition: Algorithm goes through ALL y of length $|x|^a$.

- 1. Input x. Let n = |x|.
- 2. For all *y*, $|y| = n^a$
 - 2.1 Determine $(x, y) \in B$. This takes time $2^{(O(n^a))^b} = 2^{O(n^{ab})}$.

2.2 If YES then output YES and stop.

3. (If you got here then no such y was found.) Output NO. In the worst case the loop goes through 2^{n^a} iterations, and each one takes time $2^{O(n^{ab})}$, hence $T(n) = 2^{n^a} \times 2^{O(n^{ab})} = 2^{O(n^{ab})}$.

ション ふぼう メリン メリン しょうくしゃ