
HW09 Solution



ADAM SETS: PROBLEM

A ∈ Σ1 if there ∃B ∈ DEC: A = {x : (∃y)[B(x , y)]}.

Def A is an ADAM SET if ∃ TM M:

If x ∈ A then M(x) halts.
If x /∈ A then M(x) does not halt.

And NOW for the problem:
1) Show that if A is Σ1 then A is an ADAM set.
2) Show that if A is an ADAM set then A ∈ Σ1.
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ADAM SETS: SOLUTION Part 1

A ∈ Σ1. So ∃B ∈ DEC: A = {x : (∃y)[B(x , y)]}.

Here is M:

1. Input x

2. For y = 1, 2, 3, . . . Test (x , y) ∈ B. If YES then output HALT.

If x ∈ A then some y works and the M(x) ↓.
If x /∈ A then no y works so M(x) ↑.
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ADAM SETS: SOLUTION Part 2

There is an M such that

If x ∈ A then M(x) halts.
If x /∈ A then M(x) does not halt.

We define A with quantifiers.

A = {x : (∃s)[Me,s(x) ↓].
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ISAAC PROBLEM and ANSWER

Show that if L is Σ1 then ISAAC(L) is Σ1.

Using Standard Def of Σ1

L = {x : (∃y)[B(x , y ]}

ISAAC(L) = {x : (∃y , z)[x ∈ ISAAC(z) ∧ (z , y) ∈ B].
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Using ADAM Def of Σ1

There exists M such that
x ∈ L → M(x) ↓.
x /∈ L → M(x) ↑.

We create a machine M ′ that halts only on elements of ISAAC(L).

1. Input x

2. For s = 1 to ∞
2.1 Run M(1), . . . ,M(s) for s steps.

Let y1, . . . , ym be the elements that M halted on.
Check if x ∈

⋃m
i=1 ISAAC(yi ).

If YES then HALT. If not then go to next s.

x ∈ ISAAC(L) → (∃y ∈ L)[x ∈ ISAAC(y)] → M(x) ↓.
x /∈ ISAAC(L) → ¬(∃y ∈ L)[x ∈ ISAAC(y)] → M(x) ↑.
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ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

▶ If L ∈ DEC then ISAAC(L) ∈ DEC. Fire and Brimstone.

▶ ∃L ∈ DEC such that ISAAC(L) /∈ DEC.

▶ The question is UNKNOWN TO SCIENCE.

A special case is on the next slide.
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L ⊆ a∗. If L ∈ DEC then ISAAC(L) ∈ DEC

L ⊆ a∗.

Case 1 L is finite. Then ISAAC(L) is finite, so ISAAC(L) ∈ DEC.

Case 2 L is infinite. Then ISAAC(L) = a∗, so ISAAC(L) ∈ DEC.

Hence L ⊆ a∗ and L ∈ DEC implies ISAAC(L) ∈ DEC.

Proof is nonconstructive.

Thm only for unary alphabets.

Surely this is a fluke.
Or is it? And stop calling me Shirley.
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For any Σ, If L ∈ DEC then ISAAC(L) ∈ DEC

From well-quasi-order theorem the following is known:

Thm Let L be any language. ∃ w1, . . . ,wm:
w /∈ ISAAC(L) iff w1 ∈ ISAAC(w) ∨ · · · ∨ wm ∈ ISAAC(w).

The following theorem is easy.

Thm For fixed wi the set {w : wi ∈ ISAAC(w)} is regular.

Bizarre Thm If L is any lang whatsoever then ISAAC(L) is
regular. Really!
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Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then ISAAC(L) is
regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.

2. Proof is nonconstructive. Cannot use it to FIND the DFA.

3. It was proven that there cannot be a constructive proof.
Jeremy would call that a Bill Theorem. Jeremey is right- Bill
proved it and the number of people who care is finite.

4. Key intuition about why its true: the operation ISAAC(L)
wipes out lots of information.
Example ISAAC(anbncndn) = a∗b∗c∗d∗.
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SAT Solvers Shortcuts

Input C1 ∧ · · · ∧ Cm

If C1 = (x3) then Set x3 to T

If x4 appears in the fml but ¬x4 never appears then Set x4 to T

If C2 = (x8) and C3 = (x9) and C4 = (¬x8 ∨ ¬x9) then RETURN
F.

If C4 = (x10 ∨¬x11 ∨ x12 ∨¬x12) then Replace this Clause for T.
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