HW09 Solution

$A \in \Sigma_1$ if there $\exists B \in \text{DEC}$: $A = \{x : (\exists y)[B(x, y)]\}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if $\exists TM M$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

 $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if \exists TM M: If $x \in A$ then M(x) halts.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

 $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if $\exists TM M$: If $x \in A$ then M(x) halts.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If $x \notin A$ then M(x) does not halt.

 $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if \exists TM M:

ション ふぼう メリン メリン しょうくしゃ

If $x \in A$ then M(x) halts. If $x \notin A$ then M(x) does not halt.

And NOW for the problem:

 $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if \exists TM M:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If $x \in A$ then M(x) halts. If $x \notin A$ then M(x) does not halt. And NOW for the problem: 1) Show that if A is Σ_1 then A is an ADAM set.

- $A \in \Sigma_1$ if there $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. **Def** A is an ADAM SET if \exists TM M:
- If $x \in A$ then M(x) halts.
- If $x \notin A$ then M(x) does not halt.
- And NOW for the problem:
- 1) Show that if A is Σ_1 then A is an ADAM set.
- 2) Show that if A is an ADAM set then $A \in \Sigma_1$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

 $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

1. Input x

 $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- 1. Input x
- 2. For $y = 1, 2, 3, \ldots$

 $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

- 1. Input x
- 2. For y = 1, 2, 3, ... Test $(x, y) \in B$.

- $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:
 - 1. Input x
 - 2. For y = 1, 2, 3, ... Test $(x, y) \in B$. If YES then output HALT.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

- $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:
 - 1. Input x
 - 2. For y = 1, 2, 3, ... Test $(x, y) \in B$. If YES then output HALT.

*ロト *目 * * * * * * * * * * * * * * *

If $x \in A$ then some y works and the $M(x) \downarrow$.

- $A \in \Sigma_1$. So $\exists B \in DEC$: $A = \{x : (\exists y)[B(x, y)]\}$. Here is M:
 - 1. Input x
 - 2. For y = 1, 2, 3, ... Test $(x, y) \in B$. If YES then output HALT.

If $x \in A$ then some y works and the $M(x) \downarrow$. If $x \notin A$ then no y works so $M(x) \uparrow$.

There is an M such that

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

There is an M such that If $x \in A$ then M(x) halts.

There is an M such that If $x \in A$ then M(x) halts. If $x \notin A$ then M(x) does not halt.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

There is an M such that If $x \in A$ then M(x) halts. If $x \notin A$ then M(x) does not halt.

We define A with quantifiers.

There is an M such that If $x \in A$ then M(x) halts. If $x \notin A$ then M(x) does not halt.

We define A with quantifiers.

$$A = \{x : (\exists s) [M_{e,s}(x) \downarrow].$$

Show that if L is Σ_1 then ISAAC(L) is Σ_1 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using Standard Def of Σ_1

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using Standard Def of Σ_1

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 $L = \{x : (\exists y)[B(x, y]\}$

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using Standard Def of Σ_1

 $L = \{x : (\exists y)[B(x, y]\}$ ISAAC(L) = $\{x : (\exists y, z)[x \in ISAAC(z) \land (z, y) \in B].$

Show that if L is Σ_1 then ISAAC(L) is Σ_1 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \to M(x) \downarrow$.

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that

 $\begin{array}{l} x \in L \to M(x) \downarrow. \\ x \notin L \to M(x) \uparrow. \end{array}$

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \to M(x) \downarrow$. $x \notin L \to M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \to M(x) \downarrow$. $x \notin L \to M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1. Input x

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Input x
- 2. For s=1 to ∞

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

ション ふぼう メリン メリン しょうくしゃ

- 1. Input x
- 2. For s=1 to ∞

2.1 Run $M(1), \ldots, M(s)$ for s steps.

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

- 1. Input x
- 2. For s=1 to ∞
 - 2.1 Run $M(1), \ldots, M(s)$ for s steps. Let y_1, \ldots, y_m be the elements that M halted on.

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

- 1. Input x
- 2. For s=1 to ∞
 - 2.1 Run $M(1), \ldots, M(s)$ for s steps. Let y_1, \ldots, y_m be the elements that M halted on. Check if $x \in \bigcup_{i=1}^m \text{ISAAC}(y_i)$.
ISAAC PROBLEM and ANSWER

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

- 1. Input x
- 2. For s=1 to ∞
 - 2.1 Run $M(1), \ldots, M(s)$ for s steps. Let y_1, \ldots, y_m be the elements that M halted on. Check if $x \in \bigcup_{i=1}^m \text{ISAAC}(y_i)$. If YES then HALT. If not then go to next s.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \rightarrow M(x) \downarrow$. $x \notin L \rightarrow M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

- 1. Input x
- 2. For s=1 to ∞

2.1 Run $M(1), \ldots, M(s)$ for *s* steps. Let y_1, \ldots, y_m be the elements that *M* halted on. Check if $x \in \bigcup_{i=1}^m \text{ISAAC}(y_i)$. If YES then HALT. If not then go to next *s*.

 $x \in \mathrm{ISAAC}(L) \to (\exists y \in L) [x \in \mathrm{ISAAC}(y)] \to M(x) \downarrow.$

・ロト・西・・日・・日・・日・

ISAAC PROBLEM and ANSWER

Show that if L is Σ_1 then ISAAC(L) is Σ_1 . Using ADAM Def of Σ_1

There exists M such that $x \in L \to M(x) \downarrow$. $x \notin L \to M(x) \uparrow$.

We create a machine M' that halts only on elements of ISAAC(L).

- 1. Input x
- 2. For s=1 to ∞

2.1 Run $M(1), \ldots, M(s)$ for s steps. Let y_1, \ldots, y_m be the elements that M halted on. Check if $x \in \bigcup_{i=1}^m ISAAC(y_i)$. If YES then HALT. If not then go to next s.

 $\begin{array}{l} x \in \mathrm{ISAAC}(L) \to (\exists y \in L) [x \in \mathrm{ISAAC}(y)] \to M(x) \downarrow. \\ x \notin \mathrm{ISAAC}(L) \to \neg (\exists y \in L) [x \in \mathrm{ISAAC}(y)] \to M(x) \uparrow. \end{array}$

VOTE

VOTE

▶ If $L \in DEC$ then $ISAAC(L) \in DEC$. Fire and Brimstone.

VOTE

▶ If $L \in \text{DEC}$ then $\text{ISAAC}(L) \in \text{DEC}$. Fire and Brimstone.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

▶ $\exists L \in \text{DEC}$ such that $\text{ISAAC}(L) \notin \text{DEC}$.

VOTE

▶ If $L \in \text{DEC}$ then $\text{ISAAC}(L) \in \text{DEC}$. Fire and Brimstone.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- ▶ $\exists L \in \text{DEC}$ such that $\text{ISAAC}(L) \notin \text{DEC}$.
- The question is UNKNOWN TO SCIENCE.

VOTE

▶ If $L \in \text{DEC}$ then $\text{ISAAC}(L) \in \text{DEC}$. Fire and Brimstone.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- ▶ $\exists L \in \text{DEC}$ such that $\text{ISAAC}(L) \notin \text{DEC}$.
- ► The question is UNKNOWN TO SCIENCE.
- A special case is on the next slide.

 $L \subseteq a^*$.

- * ロト * 個 ト * 注 ト * 注 ト うえぐ

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(L) is finite, so $ISAAC(L) \in DEC$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = a^* , so ISAAC(*L*) \in DEC.

$L \subseteq a^*$. If $L \in DEC$ then $ISAAC(L) \in DEC$

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = *a*^{*}, so ISAAC(*L*) \in DEC. Hence $L \subseteq a^*$ and $L \in$ DEC implies ISAAC(*L*) \in DEC.

$L \subseteq a^*$. If $L \in DEC$ then $ISAAC(L) \in DEC$

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = *a*^{*}, so ISAAC(*L*) \in DEC. Hence $L \subseteq a^*$ and $L \in$ DEC implies ISAAC(*L*) \in DEC. Proof is nonconstructive.

$L \subseteq a^*$. If $L \in DEC$ then $ISAAC(L) \in DEC$

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = *a*^{*}, so ISAAC(*L*) \in DEC. Hence $L \subseteq a^*$ and $L \in$ DEC implies ISAAC(*L*) \in DEC. Proof is nonconstructive.

Thm only for unary alphabets.

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = a^* , so ISAAC(*L*) \in DEC.

Hence $L \subseteq a^*$ and $L \in DEC$ implies $ISAAC(L) \in DEC$.

Proof is nonconstructive.

Thm only for unary alphabets.

Surely this is a fluke.

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = a^* , so ISAAC(*L*) \in DEC.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Hence $L \subseteq a^*$ and $L \in \text{DEC}$ implies $\text{ISAAC}(L) \in \text{DEC}$.

Proof is nonconstructive.

Thm only for unary alphabets.

Surely this is a fluke. Or is it?

 $L \subseteq a^*$.

Case 1 *L* is finite. Then ISAAC(*L*) is finite, so ISAAC(*L*) \in DEC. **Case 2** *L* is infinite. Then ISAAC(*L*) = a^* , so ISAAC(*L*) \in DEC.

ション ふゆ アメビア メロア しょうくしゃ

Hence $L \subseteq a^*$ and $L \in \text{DEC}$ implies $\text{ISAAC}(L) \in \text{DEC}$.

Proof is nonconstructive.

Thm only for unary alphabets.

Surely this is a fluke.

Or is it? And stop calling me Shirley.

- イロト イ理ト イヨト イヨト ヨー のへぐ

From **well-quasi-order theorem** the following is known:

For any Σ , If $L \in DEC$ then $ISAAC(L) \in DEC$

From well-quasi-order theorem the following is known: Thm Let *L* be any language. $\exists w_1, \ldots, w_m$: $w \notin \text{ISAAC}(L)$ iff $w_1 \in \text{ISAAC}(w) \lor \cdots \lor w_m \in \text{ISAAC}(w)$.

ション ふゆ アメビア メロア しょうくしゃ

From well-quasi-order theorem the following is known: Thm Let *L* be any language. $\exists w_1, \ldots, w_m$: $w \notin \text{ISAAC}(L)$ iff $w_1 \in \text{ISAAC}(w) \lor \cdots \lor w_m \in \text{ISAAC}(w)$. The following theorem is easy.

- From well-quasi-order theorem the following is known:
- Thm Let *L* be any language. $\exists w_1, \ldots, w_m$: $w \notin \text{ISAAC}(L)$ iff $w_1 \in \text{ISAAC}(w) \lor \cdots \lor w_m \in \text{ISAAC}(w)$.
- The following theorem is easy.
- **Thm** For fixed w_i the set $\{w : w_i \in \text{ISAAC}(w)\}$ is regular.

From **well-quasi-order theorem** the following is known:

Thm Let *L* be any language. $\exists w_1, \ldots, w_m$: $w \notin \text{ISAAC}(L)$ iff $w_1 \in \text{ISAAC}(w) \lor \cdots \lor w_m \in \text{ISAAC}(w)$.

The following theorem is easy.

Thm For fixed w_i the set $\{w : w_i \in \text{ISAAC}(w)\}$ is regular. Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular.

From **well-quasi-order theorem** the following is known:

Thm Let *L* be any language. $\exists w_1, \ldots, w_m$: $w \notin \text{ISAAC}(L)$ iff $w_1 \in \text{ISAAC}(w) \lor \cdots \lor w_m \in \text{ISAAC}(w)$.

The following theorem is easy.

Thm For fixed w_i the set $\{w : w_i \in \text{ISAAC}(w)\}$ is regular. **Bizarre Thm** If *L* is **any lang whatsoever** then ISAAC(L) is regular. Really!

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

- 1. Proof not that hard. Could do here. Will do in Ramsey.
- 2. Proof is nonconstructive. Cannot use it to FIND the DFA.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

- 1. Proof not that hard. Could do here. Will do in Ramsey.
- 2. Proof is nonconstructive. Cannot use it to FIND the DFA.

3. It was proven that there cannot be a constructive proof.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

- 1. Proof not that hard. Could do here. Will do in Ramsey.
- 2. Proof is nonconstructive. Cannot use it to FIND the DFA.
- It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

- 1. Proof not that hard. Could do here. Will do in Ramsey.
- 2. Proof is nonconstructive. Cannot use it to FIND the DFA.
- It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.
- 4. Key intuition about why its true: the operation ISAAC(*L*) wipes out lots of information.

Bizarre Thm If *L* is any lang whatsoever then ISAAC(L) is regular. Really!

- 1. Proof not that hard. Could do here. Will do in Ramsey.
- 2. Proof is nonconstructive. Cannot use it to FIND the DFA.
- It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.
- 4. Key intuition about why its true: the operation ISAAC(*L*) wipes out lots of information.

Example ISAAC $(a^n b^n c^n d^n) = a^* b^* c^* d^*$.

SAT Solvers Shortcuts

Input $C_1 \wedge \cdots \wedge C_m$

SAT Solvers Shortcuts

Input $C_1 \wedge \cdots \wedge C_m$ If $C_1 = (x_3)$ then

SAT Solvers Shortcuts

Input $C_1 \land \dots \land C_m$ If $C_1 = (x_3)$ then Set x_3 to T
- **Input** $C_1 \wedge \cdots \wedge C_m$
- If $C_1 = (x_3)$ then **Set** x_3 to **T**
- If x_4 appears in the fml but $\neg x_4$ never appears then

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **Input** $C_1 \wedge \cdots \wedge C_m$
- If $C_1 = (x_3)$ then **Set** x_3 to **T**
- If x_4 appears in the fml but $\neg x_4$ never appears then **Set** x_4 to **T**

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Input $C_1 \wedge \cdots \wedge C_m$ If $C_1 = (x_3)$ then Set x_3 to T If x_4 appears in the fml but $\neg x_4$ never appears then Set x_4 to T If $C_2 = (x_8)$ and $C_3 = (x_9)$ and $C_4 = (\neg x_8 \lor \neg x_9)$ then

Input $C_1 \land \dots \land C_m$ If $C_1 = (x_3)$ then Set x_3 to T If x_4 appears in the fml but $\neg x_4$ never appears then Set x_4 to T If $C_2 = (x_8)$ and $C_3 = (x_9)$ and $C_4 = (\neg x_8 \lor \neg x_9)$ then RETURN F.

Input $C_1 \wedge \cdots \wedge C_m$ If $C_1 = (x_3)$ then Set x_3 to T If x_4 appears in the fml but $\neg x_4$ never appears then Set x_4 to T If $C_2 = (x_8)$ and $C_3 = (x_9)$ and $C_4 = (\neg x_8 \lor \neg x_9)$ then RETURN F.

If
$$C_4 = (x_{10} \lor \neg x_{11} \lor x_{12} \lor \neg x_{12})$$
 then

Input $C_1 \wedge \cdots \wedge C_m$ If $C_1 = (x_3)$ then Set x_3 to T If x_4 appears in the fml but $\neg x_4$ never appears then Set x_4 to T If $C_2 = (x_8)$ and $C_3 = (x_9)$ and $C_4 = (\neg x_8 \lor \neg x_9)$ then RETURN F.

If $C_4 = (x_{10} \lor \neg x_{11} \lor x_{12} \lor \neg x_{12})$ then Replace this Clause for T.