HW09 Solution

$$
4 \square>4 \text { 甸 } \downarrow \text { 引 }
$$

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$. Def A is an ADAM SET if \exists TM M :

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Def A is an ADAM SET if \exists TM M :
If $x \in A$ then $M(x)$ halts.

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Def A is an ADAM SET if \exists TM M :
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \operatorname{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Def A is an ADAM SET if \exists TM M :
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.
And NOW for the problem:

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \operatorname{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Def A is an ADAM SET if \exists TM M :
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.
And NOW for the problem:

1) Show that if A is Σ_{1} then A is an ADAM set.

ADAM SETS: PROBLEM

$A \in \Sigma_{1}$ if there $\exists B \in \operatorname{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Def A is an ADAM SET if \exists TM M :
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.
And NOW for the problem:

1) Show that if A is Σ_{1} then A is an ADAM set.
2) Show that if A is an ADAM set then $A \in \Sigma_{1}$.

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x
2. For $y=1,2,3, \ldots$

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in \mathrm{DEC}: A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x
2. For $y=1,2,3, \ldots$ Test $(x, y) \in B$.

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in$ DEC: $A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x
2. For $y=1,2,3, \ldots$ Test $(x, y) \in B$. If YES then output HALT.

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in$ DEC: $A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x
2. For $y=1,2,3, \ldots$ Test $(x, y) \in B$. If YES then output HALT.

If $x \in A$ then some y works and the $M(x) \downarrow$.

ADAM SETS: SOLUTION Part 1

$A \in \Sigma_{1}$. So $\exists B \in$ DEC: $A=\{x:(\exists y)[B(x, y)]\}$.
Here is M :

1. Input x
2. For $y=1,2,3, \ldots$ Test $(x, y) \in B$. If YES then output HALT.

If $x \in A$ then some y works and the $M(x) \downarrow$.
If $x \notin A$ then no y works so $M(x) \uparrow$.

ADAM SETS: SOLUTION Part 2

There is an M such that

ADAM SETS: SOLUTION Part 2

There is an M such that
If $x \in A$ then $M(x)$ halts.

ADAM SETS: SOLUTION Part 2

There is an M such that
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.

ADAM SETS: SOLUTION Part 2

There is an M such that
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.
We define A with quantifiers.

ADAM SETS: SOLUTION Part 2

There is an M such that
If $x \in A$ then $M(x)$ halts.
If $x \notin A$ then $M(x)$ does not halt.
We define A with quantifiers.

$$
A=\left\{x:(\exists s)\left[M_{e, s}(x) \downarrow\right] .\right.
$$

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}. Using Standard Def of Σ_{1}

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}. Using Standard Def of Σ_{1}
$L=\{x:(\exists y)[B(x, y]\}$

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using Standard Def of Σ_{1}
$L=\{x:(\exists y)[B(x, y]\}$
$\operatorname{ISAAC}(L)=\{x:(\exists y, z)[x \in \operatorname{ISAAC}(z) \wedge(z, y) \in B]$.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps.

Let y_{1}, \ldots, y_{m} be the elements that M halted on.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps.

Let y_{1}, \ldots, y_{m} be the elements that M halted on. Check if $x \in \bigcup_{i=1}^{m} \operatorname{ISAAC}\left(y_{i}\right)$.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that
$x \in L \rightarrow M(x) \downarrow$.
$x \notin L \rightarrow M(x) \uparrow$.
We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps.

Let y_{1}, \ldots, y_{m} be the elements that M halted on.
Check if $x \in \bigcup_{i=1}^{m} \operatorname{ISAAC}\left(y_{i}\right)$.
If YES then HALT. If not then go to next s.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that

$$
\begin{aligned}
& x \in L \rightarrow M(x) \downarrow . \\
& x \notin L \rightarrow M(x) \uparrow .
\end{aligned}
$$

We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps.

Let y_{1}, \ldots, y_{m} be the elements that M halted on. Check if $x \in \bigcup_{i=1}^{m} \operatorname{ISAAC}\left(y_{i}\right)$. If YES then HALT. If not then go to next s.
$x \in \operatorname{ISAAC}(L) \rightarrow(\exists y \in L)[x \in \operatorname{ISAAC}(y)] \rightarrow M(x) \downarrow$.

ISAAC PROBLEM and ANSWER

Show that if L is Σ_{1} then $\operatorname{ISAAC}(L)$ is Σ_{1}.
Using ADAM Def of Σ_{1}
There exists M such that

$$
\begin{aligned}
& x \in L \rightarrow M(x) \downarrow . \\
& x \notin L \rightarrow M(x) \uparrow .
\end{aligned}
$$

We create a machine M^{\prime} that halts only on elements of ISAAC (L).

1. Input x
2. For $s=1$ to ∞
2.1 Run $M(1), \ldots, M(s)$ for s steps. Let y_{1}, \ldots, y_{m} be the elements that M halted on. Check if $x \in \bigcup_{i=1}^{m} \operatorname{ISAAC}\left(y_{i}\right)$. If YES then HALT. If not then go to next s.

$$
\begin{aligned}
& x \in \operatorname{ISAAC}(L) \rightarrow(\exists y \in L)[x \in \operatorname{ISAAC}(y)] \rightarrow M(x) \downarrow \\
& x \notin \operatorname{ISAAC}(L) \rightarrow \neg(\exists y \in L)[x \in \operatorname{ISAAC}(y)] \rightarrow M(x) \uparrow
\end{aligned}
$$

ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

- If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \mathrm{DEC}$. Fire and Brimstone.

ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

- If $L \in \mathrm{DEC}$ then $\operatorname{ISAAC}(L) \in \mathrm{DEC}$. Fire and Brimstone.
- $\exists L \in \mathrm{DEC}$ such that $\operatorname{ISAAC}(L) \notin \mathrm{DEC}$.

ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

- If $L \in \mathrm{DEC}$ then $\operatorname{ISAAC}(L) \in \mathrm{DEC}$. Fire and Brimstone.
- $\exists L \in \mathrm{DEC}$ such that $\operatorname{ISAAC}(L) \notin \mathrm{DEC}$.
- The question is UNKNOWN TO SCIENCE.

ISAAC THINK ABOUT PROBLEM and ANSWER

VOTE

- If $L \in \mathrm{DEC}$ then $\operatorname{ISAAC}(L) \in \mathrm{DEC}$. Fire and Brimstone.
- $\exists L \in \mathrm{DEC}$ such that $\operatorname{ISAAC}(L) \notin \mathrm{DEC}$.
- The question is UNKNOWN TO SCIENCE.

A special case is on the next slide.

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.

$L \subseteq a^{*}$. If $L \in$ DEC then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.

$L \subseteq a^{*}$. If $L \in$ DEC then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in$ DEC.
Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in$ DEC.

$L \subseteq a^{*}$. If $L \in$ DEC then $\operatorname{ISAAC}(L) \in$ DEC

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$. Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$. Hence $L \subseteq a^{*}$ and $L \in \operatorname{DEC}$ implies $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$. Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$. Hence $L \subseteq a^{*}$ and $L \in \operatorname{DEC}$ implies $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.

Proof is nonconstructive.

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Hence $L \subseteq a^{*}$ and $L \in \operatorname{DEC}$ implies $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Proof is nonconstructive.
Thm only for unary alphabets.

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Hence $L \subseteq a^{*}$ and $L \in \operatorname{DEC}$ implies $\operatorname{ISAAC}(L) \in \operatorname{DEC}$.
Proof is nonconstructive.
Thm only for unary alphabets.
Surely this is a fluke.

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in$ DEC.
Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in$ DEC.
Hence $L \subseteq a^{*}$ and $L \in$ DEC implies $\operatorname{ISAAC}(L) \in$ DEC.
Proof is nonconstructive.
Thm only for unary alphabets.
Surely this is a fluke.
Or is it?

$L \subseteq a^{*}$. If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

$L \subseteq a^{*}$.
Case $1 L$ is finite. Then $\operatorname{ISAAC}(L)$ is finite, so $\operatorname{ISAAC}(L) \in$ DEC.
Case $2 L$ is infinite. Then $\operatorname{ISAAC}(L)=a^{*}$, so $\operatorname{ISAAC}(L) \in$ DEC.
Hence $L \subseteq a^{*}$ and $L \in$ DEC implies $\operatorname{ISAAC}(L) \in$ DEC.
Proof is nonconstructive.
Thm only for unary alphabets.
Surely this is a fluke.
Or is it? And stop calling me Shirley.

For any Σ, If $L \in$ DEC then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

For any Σ, If $L \in$ DEC then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:

For any Σ, If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:
Thm Let L be any language. $\exists w_{1}, \ldots, w_{m}$:
$w \notin \operatorname{ISAAC}(L)$ iff $w_{1} \in \operatorname{ISAAC}(w) \vee \cdots \vee w_{m} \in \operatorname{ISAAC}(w)$.

For any Σ, If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:
Thm Let L be any language. $\exists w_{1}, \ldots, w_{m}$:
$w \notin \operatorname{ISAAC}(L)$ iff $w_{1} \in \operatorname{ISAAC}(w) \vee \cdots \vee w_{m} \in \operatorname{ISAAC}(w)$.
The following theorem is easy.

For any Σ, If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:
Thm Let L be any language. $\exists w_{1}, \ldots, w_{m}$:
$w \notin \operatorname{ISAAC}(L)$ iff $w_{1} \in \operatorname{ISAAC}(w) \vee \cdots \vee w_{m} \in \operatorname{ISAAC}(w)$.
The following theorem is easy.
Thm For fixed w_{i} the set $\left\{w: w_{i} \in \operatorname{ISAAC}(w)\right\}$ is regular.

For any Σ, If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:
Thm Let L be any language. $\exists w_{1}, \ldots, w_{m}$:
$w \notin \operatorname{ISAAC}(L)$ iff $w_{1} \in \operatorname{ISAAC}(w) \vee \cdots \vee w_{m} \in \operatorname{ISAAC}(w)$.
The following theorem is easy.
Thm For fixed w_{i} the set $\left\{w: w_{i} \in \operatorname{ISAAC}(w)\right\}$ is regular. Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular.

For any Σ, If $L \in \operatorname{DEC}$ then $\operatorname{ISAAC}(L) \in \operatorname{DEC}$

From well-quasi-order theorem the following is known:
Thm Let L be any language. $\exists w_{1}, \ldots, w_{m}$:
$w \notin \operatorname{ISAAC}(L)$ iff $w_{1} \in \operatorname{ISAAC}(w) \vee \cdots \vee w_{m} \in \operatorname{ISAAC}(w)$.
The following theorem is easy.
Thm For fixed w_{i} the set $\left\{w: w_{i} \in \operatorname{ISAAC}(w)\right\}$ is regular. Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

Notes on Bizarre Theorem

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.
2. Proof is nonconstructive. Cannot use it to FIND the DFA.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.
2. Proof is nonconstructive. Cannot use it to FIND the DFA.
3. It was proven that there cannot be a constructive proof.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.
2. Proof is nonconstructive. Cannot use it to FIND the DFA.
3. It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.
2. Proof is nonconstructive. Cannot use it to FIND the DFA.
3. It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.
4. Key intuition about why its true: the operation ISAAC(L) wipes out lots of information.

Notes on Bizarre Theorem

Bizarre Thm If L is any lang whatsoever then $\operatorname{ISAAC}(L)$ is regular. Really!

1. Proof not that hard. Could do here. Will do in Ramsey.
2. Proof is nonconstructive. Cannot use it to FIND the DFA.
3. It was proven that there cannot be a constructive proof. Jeremy would call that a Bill Theorem. Jeremey is right- Bill proved it and the number of people who care is finite.
4. Key intuition about why its true: the operation ISAAC(L) wipes out lots of information. Example ISAAC $\left(a^{n} b^{n} c^{n} d^{n}\right)=a^{*} b^{*} c^{*} d^{*}$.

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to T
If x_{4} appears in the fml but $\neg x_{4}$ never appears then

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}
If x_{4} appears in the fml but $\neg x_{4}$ never appears then Set x_{4} to \mathbf{T}

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}
If x_{4} appears in the fml but $\neg x_{4}$ never appears then Set x_{4} to \mathbf{T}
If $C_{2}=\left(x_{8}\right)$ and $C_{3}=\left(x_{9}\right)$ and $C_{4}=\left(\neg x_{8} \vee \neg x_{9}\right)$ then

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}
If x_{4} appears in the fml but $\neg x_{4}$ never appears then Set x_{4} to \mathbf{T} If $C_{2}=\left(x_{8}\right)$ and $C_{3}=\left(x_{9}\right)$ and $C_{4}=\left(\neg x_{8} \vee \neg x_{9}\right)$ then RETURN F.

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}
If x_{4} appears in the fml but $\neg x_{4}$ never appears then Set x_{4} to \mathbf{T} If $C_{2}=\left(x_{8}\right)$ and $C_{3}=\left(x_{9}\right)$ and $C_{4}=\left(\neg x_{8} \vee \neg x_{9}\right)$ then RETURN F.

If $C_{4}=\left(x_{10} \vee \neg x_{11} \vee x_{12} \vee \neg x_{12}\right)$ then

SAT Solvers Shortcuts

Input $C_{1} \wedge \cdots \wedge C_{m}$
If $C_{1}=\left(x_{3}\right)$ then Set x_{3} to \mathbf{T}
If x_{4} appears in the fml but $\neg x_{4}$ never appears then Set x_{4} to \mathbf{T} If $C_{2}=\left(x_{8}\right)$ and $C_{3}=\left(x_{9}\right)$ and $C_{4}=\left(\neg x_{8} \vee \neg x_{9}\right)$ then RETURN F.

If $C_{4}=\left(x_{10} \vee \neg x_{11} \vee x_{12} \vee \neg x_{12}\right)$ then Replace this Clause for \mathbf{T}.

