HW11 Solution

CFG Comp is Undecidable

1) $\overline{ACC_e}$ is a CFL:

CFG Comp is Undecidable

1) $\overline{ACC_e}$ is a CFL:

For $\overline{\text{ACC}_{e,x}}$ we had the set of strings w's prefix is NOT $\#x(s,\#)\#^*$.

CFG Comp is Undecidable

1) $\overline{ACC_e}$ is a CFL:

For $\overline{\text{ACC}_{e,x}}$ we had the set of strings w's prefix is NOT $\#x(s,\#)\#^*$.

For ACC_e we replace x with ANY elements of Σ^* . Hence w's prefix is NOT $\#\Sigma^*(s, \#)\#^*$.

INF is $\{e : M_e \text{ accepts an infinite number of inputs }\}$ 2) Show: If $e \in \text{INF}$ then ACC_e is NOT a CFL.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

INF is $\{e : M_e \text{ accepts an infinite number of inputs } \}$ 2) Show: If $e \in \text{INF}$ then ACC_e is NOT a CFL. Omitted

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

3) Show that if $e \notin INF$ then ACC_e IS a CFL.

If $e \notin INF$ then ACC_e is FINITE, hence a CFL.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Show that if CFG-COMP is decidable then INF is decidable.

Show that if CFG-COMP is decidable then INF is decidable. Input *e*. Create a CFG *G* for $\overline{ACC_e}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Show that if CFG-COMP is decidable then INF is decidable.

- lnput *e*. Create a CFG *G* for $\overline{ACC_e}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)} = ACC_e$ is a CFL.

Show that if CFG-COMP is decidable then INF is decidable.

- lnput *e*. Create a CFG *G* for $\overline{ACC_e}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)} = ACC_e$ is a CFL.

▶ If $\overline{L(G)}$ IS a CFL then $e \notin INF$, so output NOT and halt.

Show that if CFG-COMP is decidable then INF is decidable.

- lnput *e*. Create a CFG *G* for $\overline{ACC_e}$.
- ▶ Use the algo for CFG-COMP to determine if $\overline{L(G)} = ACC_e$ is a CFL.
- ▶ If $\overline{L(G)}$ IS a CFL then $e \notin INF$, so output NOT and halt.
- ▶ If $\overline{L(G)}$ IS NOT a CFL then $e \in INF$, so output YES and halt.

Show that if CFG-COMP is decidable then INF is decidable.

- lnput *e*. Create a CFG *G* for $\overline{\text{ACC}_e}$.
- ► Use the algo for CFG-COMP to determine if L(G) = ACC_e is a CFL.
- ▶ If $\overline{L(G)}$ IS a CFL then $e \notin INF$, so output NOT and halt.
- ▶ If $\overline{L(G)}$ IS NOT a CFL then $e \in INF$, so output YES and halt. $e \in INF \implies ACC_e$ not CFL $\implies \overline{L(G)} = ACC_e$ NOT CFG.

Show that if CFG-COMP is decidable then INF is decidable.

- lnput *e*. Create a CFG *G* for $\overline{\text{ACC}_e}$.
- ▶ Use the algo for CFG-COMP to determine if $\overline{L(G)} = ACC_e$ is a CFL.
- ▶ If $\overline{L(G)}$ IS a CFL then $e \notin INF$, so output NOT and halt.
- ▶ If $\overline{L(G)}$ IS NOT a CFL then $e \in \text{INF}$, so output YES and halt. $e \in \text{INF} \implies \text{ACC}_e \text{ not CFL} \implies \overline{L(G)} = \text{ACC}_e \text{ NOT CFG}.$ $e \notin \text{INF} \implies \text{ACC}_e \text{ is CFL} \implies \overline{L(G)} = \text{ACC}_e \text{ is a CFG}.$

Diophantine Sets

$$A = \bigg\{ x : \bigwedge_{i=1}^k x \equiv a_i \pmod{m_i} \bigg\}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Diophantine Sets

$$A = \bigg\{ x : \bigwedge_{i=1}^k x \equiv a_i \pmod{m_i} \bigg\}.$$

 $x \in A$ iff

$$(\exists y_1, \ldots, y_k)[(\sum_{i=1}^k (x - a_i - y_i m_i)^2 = 0)]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

 p_1, \ldots, p_k are primes.

 p_1, \ldots, p_k are primes.

$$\bigwedge_{i=1}^{k} x \not\equiv 0 \pmod{p_i} \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_i-1} x \equiv j \pmod{p_i}$$

 p_1, \ldots, p_k are primes.

$$\bigwedge_{i=1}^{k} x \not\equiv 0 \pmod{p_i} \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_i-1} x \equiv j \pmod{p_i}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $p_{i,j}(x, y_{i,j}) = (x - j + y_i p_i).$

 p_1, \ldots, p_k are primes.

$$\bigwedge_{i=1}^{k} x \not\equiv 0 \pmod{p_i} \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_i-1} x \equiv j \pmod{p_i}$$

Let
$$p_{i,j}(x, y_{i,j}) = (x - j + y_i p_i).$$

Let $p_i(x, y_{i,1}, y_{i,2}, \dots, y_{i,p_i-1}) = \prod_{j=1}^{p_i-1} (x - p_i y_{i,j} + j)$

 p_1, \ldots, p_k are primes.

$$\bigwedge_{i=1}^{k} x \not\equiv 0 \pmod{p_i} \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_i-1} x \equiv j \pmod{p_i}$$

Let
$$p_{i,j}(x, y_{i,j}) = (x - j + y_i p_i)$$
.
Let $p_i(x, y_{i,1}, y_{i,2}, \dots, y_{i,p_i-1}) = \prod_{j=1}^{p_i-1} (x - p_i y_{i,j} + j)$
The final polynomial is

$$\sum_{i=1}^{k} p_i(x, y_{i,1}, \dots, y_{i,p_i-1})^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 今へぐ

Horse Number Variant

For $n \ge 2$. B(n): numb of ways that n horses, x_1, \ldots, x_n , can finish a race (equalities allowed) such that $x_1 < x_2$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 1 x_1 is one of the mins. x_2 CANNOT be a min. For $0 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to also be mins.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Case 1 x_1 is one of the mins. x_2 CANNOT be a min. For $0 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to also be mins. This can be done in $\binom{n-2}{i}$ ways.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Case 1 x_1 is one of the mins. x_2 CANNOT be a min. For $0 \le i \le n-2$ choose i of $\{x_3, x_4, \ldots, x_n\}$ to also be mins. This can be done in $\binom{n-2}{i}$ ways. Then there are n - i - 1 left which can be ordered in H(n - i - 1) ways.

Case 1 x_1 is one of the mins. x_2 CANNOT be a min. For $0 \le i \le n-2$ choose i of $\{x_3, x_4, \ldots, x_n\}$ to also be mins. This can be done in $\binom{n-2}{i}$ ways. Then there are n - i - 1 left which can be ordered in H(n - i - 1) ways.

$$\sum_{i=0}^{n-2} \binom{n-2}{i} H(n-i-1)$$

Case 2 x_1 is NOT one of the mins.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Case 2 x_1 is NOT one of the mins. For $1 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to be mins.

・ロト・日本・モト・モト・モー うへぐ

Case 2 x_1 is NOT one of the mins. For $1 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to be mins. This can be done in $\binom{n-2}{i}$ ways.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Case 2 x_1 is NOT one of the mins. For $1 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to be mins. This can be done in $\binom{n-2}{i}$ ways.

Then there are n - i left which can be ordered in B(n - i) ways. So

$$\sum_{i=1}^{n-2} \binom{n-2}{i} B(n-i)$$

ション ふゆ アメリア メリア しょうくしゃ

Case 2 x_1 is NOT one of the mins. For $1 \le i \le n-2$ choose *i* of $\{x_3, x_4, \ldots, x_n\}$ to be mins. This can be done in $\binom{n-2}{i}$ ways.

Then there are n - i left which can be ordered in B(n - i) ways. So

$$\sum_{i=1}^{n-2} \binom{n-2}{i} B(n-i)$$

So the total is

$$B(n) = \sum_{i=0}^{n-2} {\binom{n-2}{i}} H(n-i-1) + \sum_{i=1}^{n-2} {\binom{n-2}{i}} B(n-i)$$

CFG for Singleton Sets

G is a CFL then L(G) is the set of strings that G generates. $\Sigma = \{a, b\}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

G is a CFL then L(G) is the set of strings that G generates. $\Sigma = \{a, b\}.$

Show that there is a CFL G in Chomsky normal form with $L(G) = \{a^n\}$ with $O(\log n)$ rules.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

G is a CFL then L(G) is the set of strings that G generates. $\Sigma = \{a, b\}.$

Show that there is a CFL G in Chomsky normal form with $L(G) = \{a^n\}$ with $O(\log n)$ rules.

ション ふゆ アメリア メリア しょうくしゃ

Omitted- did it earlier in the semester.

CFG for Singleton Sets

w is Kolm-rand string of length n.

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that $L(G) = \{w\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that $L(G) = \{w\}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Show that Then G has at least $\Omega(n^{0.9})$ rules.

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that $L(G) = \{w\}$.

Show that Then G has at least $\Omega(n^{0.9})$ rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In this case each nonterminal can be represented with $O(\log R)$ bits. Hence the size of the CFL is $O(R \log R)$ bits.

ション ふぼう メリン メリン しょうくしゃ

The following program outputs w.

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. If it says YES then output x.

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- 2. If it says YES then output x.
- 3. If not then go to the next x.

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

- 1. Run the Algorithm to test if $x \in L(G)$.
- 2. If it says YES then output x.
- 3. If not then go to the next x.

Since $L(G) = \{w\}$ this algorithm will eventually output w.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The following program outputs w. For $x \in \{a, b\}^*$ (in lex order)

- 1. Run the Algorithm to test if $x \in L(G)$.
- 2. If it says YES then output x.

3. If not then go to the next x.

Since $L(G) = \{w\}$ this algorithm will eventually output w. How big is the program?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Since w is Kolmogorov Random of length n,

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

 $n \leq O(R \log R)$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

 $n \leq O(R \log R)$

Assume, BWOC that $R < O(n^{0.9})$. Then

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

 $n \leq O(R \log R)$

Assume, BWOC that $R < O(n^{0.9})$. Then

$$n \leq O(R \log R) < O(n^{0.9} \log n^{0.9}) = O(n^{0.9} \log n).$$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

 $n \leq O(R \log R)$

Assume, BWOC that $R < O(n^{0.9})$. Then

$$n \leq O(R \log R) < O(n^{0.9} \log n^{0.9}) = O(n^{0.9} \log n).$$

This is a contradiction. Hence $R \ge \Omega(n^{0.9})$.