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CFG Comp is Undecidable

1) ACCe is a CFL:

For ACCe,x we had the set of strings
w ’s prefix is NOT #x(s,#)#∗$.

For ACCe we replace x with ANY elements of Σ∗. Hence
w ’s prefix is NOT #Σ∗(s,#)#∗$.
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CFG Comp is Undecidable (cont)

INF is {e : Me accepts an infinite number of inputs }
2) Show: If e ∈ INF then ACCe is NOT a CFL.

Omitted



CFG Comp is Undecidable (cont)

INF is {e : Me accepts an infinite number of inputs }
2) Show: If e ∈ INF then ACCe is NOT a CFL.
Omitted



CFG Comp is Undecidable (cont)

3) Show that if e /∈ INF then ACCe IS a CFL.

If e /∈ INF then ACCe is FINITE, hence a CFL.



CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

▶ Input e. Create a CFG G for ACCe .

▶ Use the algo for CFG-COMP to determine if L(G ) = ACCe is
a CFL.

▶ If L(G ) IS a CFL then e /∈ INF, so output NOT and halt.

▶ If L(G ) IS NOT a CFL then e ∈ INF, so output YES and halt.

e ∈ INF =⇒ ACCe not CFL =⇒ L(G ) = ACCe NOT CFG.
e /∈ INF =⇒ ACCe is CFL =⇒ L(G ) = ACCe is a CFG.
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Diophantine Sets

A =

{
x :

k∧
i=1

x ≡ ai (mod mi )

}
.

x ∈ A iff

(∃y1, . . . , yk)[(
k∑

i=1

(x − ai − yimi )
2 = 0)]
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More Dio Sets

p1, . . . , pk are primes.

k∧
i=1

x ̸≡ 0 (mod pi ) ≡
k∧

i=1

pi−1∨
j=1

x ≡ j (mod pi )

Let pi ,j(x , yi ,j) = (x − j + yipi ).

Let pi (x , yi ,1, yi ,2, . . . , yi ,pi−1) =
∏pi−1

j=1 (x − piyi ,j + j)

The final polynomial is

k∑
i=1

pi (x , yi ,1, . . . , yi ,pi−1)
2
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Horse Number Variant

For n ≥ 2. B(n): numb of ways that n horses, x1, . . . , xn, can
finish a race (equalities allowed) such that x1 < x2.



Horse Number Variant Case 1

Case 1 x1 is one of the mins. x2 CANNOT be a min. For
0 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to also be mins.

This can be done in
(n−2

i

)
ways.

Then there are n − i − 1 left which can be ordered in H(n − i − 1)
ways.

n−2∑
i=0

(
n − 2

i

)
H(n − i − 1)
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Horse Number Variant Case 2

Case 2 x1 is NOT one of the mins.

For 1 ≤ i ≤ n − 2 choose i of {x3, x4, . . . , xn} to be mins.
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i

)
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Then there are n− i left which can be ordered in B(n− i) ways. So
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So the total is
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CFG for Singleton Sets

G is a CFL then L(G ) is the set of strings that G generates.
Σ = {a, b}.

Show that there is a CFL G in Chomsky normal form with
L(G ) = {an} with O(log n) rules.

Omitted- did it earlier in the semester.
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CFG for Singleton Sets

w is Kolm-rand string of length n.

Let G be a CFL in Chomsky Normal Form such that L(G ) = {w}.

Show that Then G has at least Ω(n0.9) rules.

Hint If a CFL has R rules then it has at most 3R nonterminals. In
this case each nonterminal can be represented with O(logR) bits.
Hence the size of the CFL is O(R logR) bits.
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CFG for {w}

The following program outputs w .

For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .

How big is the program?



CFG for {w}

The following program outputs w .
For x ∈ {a, b}∗ (in lex order)

1. Run the Algorithm to test if x ∈ L(G ).

2. If it says YES then output x .

3. If not then go to the next x .

Since L(G ) = {w} this algorithm will eventually output w .
How big is the program?



CFG for {w}

The program needs to have the rules but not much else. Hence the
length of the program is O(R logR).

Since w is Kolmogorov Random of length n,

n ≤ O(R logR)

Assume, BWOC that R < O(n0.9). Then

n ≤ O(R logR) < O(n0.9 log n0.9) = O(n0.9 log n).

This is a contradiction. Hence R ≥ Ω(n0.9).
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