HW11 Solution

$$
4 \square>4 \text { 甸 } \downarrow \text { 引 }
$$

CFG Comp is Undecidable

1) $\overline{A C C_{e}}$ is a CFL:

CFG Comp is Undecidable

1) $\overline{A C C_{e}}$ is a CFL:

For $\overline{\mathrm{ACC}_{e, x}}$ we had the set of strings
w 's prefix is NOT $\# x(s, \#) \#^{*} \$$.

CFG Comp is Undecidable

1) $\overline{A C C_{e}}$ is a CFL:

For $\overline{\mathrm{ACC}_{e, x}}$ we had the set of strings
w's prefix is NOT \#x(s,\#) \#*\$.
For ACC_{e} we replace x with ANY elements of Σ^{*}. Hence w's prefix is NOT \# $\Sigma^{*}(s, \#) \# * \$$.

CFG Comp is Undecidable (cont)

INF is $\left\{e: M_{e}\right.$ accepts an infinite number of inputs $\}$
2) Show: If $e \in \operatorname{INF}$ then ACC_{e} is NOT a CFL.

CFG Comp is Undecidable (cont)

INF is $\left\{e: M_{e}\right.$ accepts an infinite number of inputs $\}$
2) Show: If $e \in \operatorname{INF}$ then ACC_{e} is NOT a CFL.

Omitted

CFG Comp is Undecidable (cont)

3) Show that if $e \notin$ INF then ACC_{e} IS a CFL.

If $e \notin$ INF then ACC_{e} is FINITE, hence a CFL.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)}=\mathrm{ACC}_{e}$ is a CFL.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)}=\mathrm{ACC}_{e}$ is a CFL.
- If $\overline{L(G)}$ IS a CFL then $e \notin$ INF, so output NOT and halt.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)}=\mathrm{ACC}_{e}$ is a CFL.
- If $\overline{L(G)}$ IS a CFL then $e \notin$ INF, so output NOT and halt.
- If $\overline{L(G)}$ IS NOT a CFL then $e \in \operatorname{INF}$, so output YES and halt.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)}=\mathrm{ACC}_{e}$ is a CFL.
- If $\overline{L(G)}$ IS a CFL then $e \notin$ INF, so output NOT and halt.
- If $\overline{L(G)}$ IS NOT a CFL then $e \in \operatorname{INF}$, so output YES and halt.
$e \in \mathrm{INF} \Longrightarrow \mathrm{ACC}_{e}$ not CFL $\Longrightarrow \overline{L(G)}=\mathrm{ACC}_{e}$ NOT CFG.

CFG Comp is Undecidable (cont)

Show that if CFG-COMP is decidable then INF is decidable.

- Input e. Create a CFG G for $\overline{\mathrm{ACC}_{e}}$.
- Use the algo for CFG-COMP to determine if $\overline{L(G)}=\mathrm{ACC}_{e}$ is a CFL.
- If $\overline{L(G)}$ IS a CFL then $e \notin$ INF, so output NOT and halt.
- If $\overline{L(G)}$ IS NOT a CFL then $e \in \operatorname{INF}$, so output YES and halt.
$e \in \mathrm{INF} \Longrightarrow \mathrm{ACC}_{e}$ not CFL $\Longrightarrow \overline{L(G)}=\mathrm{ACC}_{e}$ NOT CFG.
$e \notin \mathrm{INF} \Longrightarrow \mathrm{ACC}_{e}$ is CFL $\Longrightarrow L(G)=A C C_{e}$ is a CFG.

Diophantine Sets

$$
A=\left\{x: \bigwedge_{i=1}^{k} x \equiv a_{i} \quad\left(\bmod m_{i}\right)\right\}
$$

Diophantine Sets

$$
A=\left\{x: \bigwedge_{i=1}^{k} x \equiv a_{i} \quad\left(\bmod m_{i}\right)\right\} .
$$

$x \in A$ iff

$$
\left(\exists y_{1}, \ldots, y_{k}\right)\left[\left(\sum_{i=1}^{k}\left(x-a_{i}-y_{i} m_{i}\right)^{2}=0\right)\right]
$$

More Dio Sets

p_{1}, \ldots, p_{k} are primes.

More Dio Sets

p_{1}, \ldots, p_{k} are primes.

$$
\bigwedge_{i=1}^{k} x \not \equiv 0 \quad\left(\bmod p_{i}\right) \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_{i}-1} x \equiv j \quad\left(\bmod p_{i}\right)
$$

More Dio Sets

p_{1}, \ldots, p_{k} are primes.

$$
\bigwedge_{i=1}^{k} x \not \equiv 0 \quad\left(\bmod p_{i}\right) \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_{i}-1} x \equiv j \quad\left(\bmod p_{i}\right)
$$

Let $p_{i, j}\left(x, y_{i, j}\right)=\left(x-j+y_{i} p_{i}\right)$.

More Dio Sets

p_{1}, \ldots, p_{k} are primes.

$$
\bigwedge_{i=1}^{k} x \not \equiv 0 \quad\left(\bmod p_{i}\right) \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_{i}-1} x \equiv j \quad\left(\bmod p_{i}\right)
$$

Let $p_{i, j}\left(x, y_{i, j}\right)=\left(x-j+y_{i} p_{i}\right)$.
Let $p_{i}\left(x, y_{i, 1}, y_{i, 2}, \ldots, y_{i, p_{i}-1}\right)=\prod_{j=1}^{p_{i}-1}\left(x-p_{i} y_{i, j}+j\right)$

More Dio Sets

p_{1}, \ldots, p_{k} are primes.

$$
\bigwedge_{i=1}^{k} x \not \equiv 0 \quad\left(\bmod p_{i}\right) \equiv \bigwedge_{i=1}^{k} \bigvee_{j=1}^{p_{i}-1} x \equiv j \quad\left(\bmod p_{i}\right)
$$

Let $p_{i, j}\left(x, y_{i, j}\right)=\left(x-j+y_{i} p_{i}\right)$.
Let $p_{i}\left(x, y_{i, 1}, y_{i, 2}, \ldots, y_{i, p_{i}-1}\right)=\prod_{j=1}^{p_{i}-1}\left(x-p_{i} y_{i, j}+j\right)$
The final polynomial is

$$
\sum_{i=1}^{k} p_{i}\left(x, y_{i, 1}, \ldots, y_{i, p_{i}-1}\right)^{2}
$$

Horse Number Variant

For $n \geq 2$. $B(n)$: numb of ways that n horses, x_{1}, \ldots, x_{n}, can finish a race (equalities allowed) such that $x_{1}<x_{2}$.

Horse Number Variant Case 1

Case $1 x_{1}$ is one of the mins. x_{2} CANNOT be a min. For $0 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to also be mins.

Horse Number Variant Case 1

Case $1 x_{1}$ is one of the mins. x_{2} CANNOT be a min. For $0 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to also be mins. This can be done in $\binom{n-2}{i}$ ways.

Horse Number Variant Case 1

Case $1 x_{1}$ is one of the mins. x_{2} CANNOT be a min. For $0 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to also be mins.
This can be done in $\binom{n-2}{i}$ ways.
Then there are $n-i-1$ left which can be ordered in $H(n-i-1)$ ways.

Horse Number Variant Case 1

Case $1 x_{1}$ is one of the mins. x_{2} CANNOT be a min. For $0 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to also be mins.
This can be done in $\binom{n-2}{i}$ ways.
Then there are $n-i-1$ left which can be ordered in $H(n-i-1)$ ways.

$$
\sum_{i=0}^{n-2}\binom{n-2}{i} H(n-i-1)
$$

Horse Number Variant Case 2

Case $2 x_{1}$ is NOT one of the mins.

Horse Number Variant Case 2

Case $2 x_{1}$ is NOT one of the mins.
For $1 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to be mins.

Horse Number Variant Case 2

Case $2 x_{1}$ is NOT one of the mins.
For $1 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to be mins.
This can be done in $\binom{n-2}{i}$ ways.

Horse Number Variant Case 2

Case $2 x_{1}$ is NOT one of the mins.
For $1 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to be mins.
This can be done in $\binom{n-2}{i}$ ways.
Then there are $n-i$ left which can be ordered in $B(n-i)$ ways. So

$$
\sum_{i=1}^{n-2}\binom{n-2}{i} B(n-i)
$$

Horse Number Variant Case 2

Case $2 x_{1}$ is NOT one of the mins.
For $1 \leq i \leq n-2$ choose i of $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ to be mins.
This can be done in $\binom{n-2}{i}$ ways.
Then there are $n-i$ left which can be ordered in $B(n-i)$ ways. So

$$
\sum_{i=1}^{n-2}\binom{n-2}{i} B(n-i)
$$

So the total is

$$
B(n)=\sum_{i=0}^{n-2}\binom{n-2}{i} H(n-i-1)+\sum_{i=1}^{n-2}\binom{n-2}{i} B(n-i)
$$

CFG for Singleton Sets

G is a CFL then $L(G)$ is the set of strings that G generates. $\Sigma=\{a, b\}$.

CFG for Singleton Sets

G is a CFL then $L(G)$ is the set of strings that G generates. $\Sigma=\{a, b\}$.

Show that there is a CFL G in Chomsky normal form with $L(G)=\left\{a^{n}\right\}$ with $O(\log n)$ rules.

CFG for Singleton Sets

G is a CFL then $L(G)$ is the set of strings that G generates. $\Sigma=\{a, b\}$.

Show that there is a CFL G in Chomsky normal form with $L(G)=\left\{a^{n}\right\}$ with $O(\log n)$ rules.

Omitted- did it earlier in the semester.

CFG for Singleton Sets

w is Kolm-rand string of length n.

CFG for Singleton Sets

w is Kolm-rand string of length n.
Let G be a CFL in Chomsky Normal Form such that $L(G)=\{w\}$.

CFG for Singleton Sets

w is Kolm-rand string of length n.
Let G be a CFL in Chomsky Normal Form such that $L(G)=\{w\}$.
Show that Then G has at least $\Omega\left(n^{0.9}\right)$ rules.

CFG for Singleton Sets

w is Kolm-rand string of length n.
Let G be a CFL in Chomsky Normal Form such that $L(G)=\{w\}$.
Show that Then G has at least $\Omega\left(n^{0.9}\right)$ rules.
Hint If a CFL has R rules then it has at most $3 R$ nonterminals. In this case each nonterminal can be represented with $O(\log R)$ bits. Hence the size of the CFL is $O(R \log R)$ bits.

CFG for $\{w\}$

The following program outputs w.

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.
2. If it says YES then output x.

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.
2. If it says YES then output x.
3. If not then go to the next x.

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.
2. If it says YES then output x.
3. If not then go to the next x.

Since $L(G)=\{w\}$ this algorithm will eventually output w.

CFG for $\{w\}$

The following program outputs w.
For $x \in\{a, b\}^{*}$ (in lex order)

1. Run the Algorithm to test if $x \in L(G)$.
2. If it says YES then output x.
3. If not then go to the next x.

Since $L(G)=\{w\}$ this algorithm will eventually output w. How big is the program?

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

$$
n \leq O(R \log R)
$$

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

$$
n \leq O(R \log R)
$$

Assume, BWOC that $R<O\left(n^{0.9}\right)$. Then

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

$$
n \leq O(R \log R)
$$

Assume, BWOC that $R<O\left(n^{0.9}\right)$. Then

$$
n \leq O(R \log R)<O\left(n^{0.9} \log n^{0.9}\right)=O\left(n^{0.9} \log n\right)
$$

CFG for $\{w\}$

The program needs to have the rules but not much else. Hence the length of the program is $O(R \log R)$.

Since w is Kolmogorov Random of length n,

$$
n \leq O(R \log R)
$$

Assume, BWOC that $R<O\left(n^{0.9}\right)$. Then

$$
n \leq O(R \log R)<O\left(n^{0.9} \log n^{0.9}\right)=O\left(n^{0.9} \log n\right)
$$

This is a contradiction. Hence $R \geq \Omega\left(n^{0.9}\right)$.

