BILL AND NATHAN RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

BILL AND NATHAN RECORD LECTURE!!!

You have been emailed to fill out teaching evals of all of your teachers.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

You have been emailed to fill out teaching evals of all of your teachers. Please do this!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

You have been emailed to fill out teaching evals of all of your teachers.

Please do this!

1. Used by teachers to improve their teaching. I use them.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

You have been emailed to fill out teaching evals of all of your teachers.

Please do this!

- 1. Used by teachers to improve their teaching. I use them.
- 2. Used by the chair of the Teach Eval Comm to help others with their teaching. I have been that chair.

ション ふゆ アメリア メリア しょうくしゃ

You have been emailed to fill out teaching evals of all of your teachers.

Please do this!

- 1. Used by teachers to improve their teaching. I use them.
- 2. Used by the chair of the Teach Eval Comm to help others with their teaching. I have been that chair.
- **3**. Used by the Dept to put together teaching reports for faculty for tenure and full prof cases. I have written such reports.

ション ふゆ アメリア メリア しょうくしゃ

Which of these strings looks more random? (This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

Which of these strings looks more random?

(This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

- 2. 011010001100000011101010100011001

Which of these strings looks more random?

(This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

- 2. 011010001100000011101010100011001

You prob think the second string is more random then the first.

Which of these strings looks more random?

(This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

- 2. 011010001100000011101010100011001

You prob think the second string is **more random** then the first. You are right!

Which of these strings looks more random?

(This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

- 2. 011010001100000011101010100011001

You prob think the second string is **more random** then the first. You are right!

ション ふゆ アメリア メリア しょうくしゃ

How do we pin this down?

Which of these strings looks more random?

(This is NOT a trick question. Your intuitions will be correct. We will formalize them.)

- 2. 011010001100000011101010100011001

You prob think the second string is **more random** then the first. You are right!

ション ふぼう メリン メリン しょうくしゃ

How do we pin this down? Discuss!

A Programs to Print Out 0...0

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

A Programs to Print Out 0...0

The string was of length 33 but the program is far shorter.

A Programs to Print Out 0...0

A Programs to Print Out the Second String

Here is a program to print out 011010001100000001110101010001100.

A Programs to Print Out the Second String

Here is a program to print out 01101000110000001110101010001100.

print(01101000110000001110101010001100)

A Programs to Print Out the Second String

Here is a program to print out 011010001100000001110101010001100.

print(0110100011000000111010100001100) The string is of length 33 and the program is of length 33. **Upshot** The **less random string** required a much shorter program to print it out then the **more random string**.

Taking a cue from the above two examples, we will define the **Randomness of a string** x to be the size of the shortest Turing Machine (TM) that prints x. **Def**

Taking a cue from the above two examples, we will define the **Randomness of a string** x to be the size of the shortest Turing Machine (TM) that prints x. **Def**

1. If $x \in \{0,1\}^n$ then C(x) is the length of the shortest TM that, on input 0, prints out x. Note that $C(x) \le n + O(1)$.

Taking a cue from the above two examples, we will define the **Randomness of a string** x to be the size of the shortest Turing Machine (TM) that prints x. **Def**

- 1. If $x \in \{0,1\}^n$ then C(x) is the length of the shortest TM that, on input 0, prints out x. Note that $C(x) \le n + O(1)$.
- 2. If $x \in \{0,1\}^n$ then C(x|y) is the length of the shortest TM that, on input y, prints out x. Note that $C(x|y) \le n + O(1)$.

ション ふゆ アメリア メリア しょうくしゃ

Taking a cue from the above two examples, we will define the **Randomness of a string** x to be the size of the shortest Turing Machine (TM) that prints x.

Def

- 1. If $x \in \{0,1\}^n$ then C(x) is the length of the shortest TM that, on input 0, prints out x. Note that $C(x) \le n + O(1)$.
- 2. If $x \in \{0,1\}^n$ then C(x|y) is the length of the shortest TM that, on input y, prints out x. Note that $C(x|y) \le n + O(1)$.

3. A string is Kolmogorov random if $C(x) \ge n$. A string is Kolmogorov random relative to y if $C(x|y) \ge n$.

Taking a cue from the above two examples, we will define the **Randomness of a string** x to be the size of the shortest Turing Machine (TM) that prints x.

Def

- 1. If $x \in \{0,1\}^n$ then C(x) is the length of the shortest TM that, on input 0, prints out x. Note that $C(x) \le n + O(1)$.
- 2. If $x \in \{0,1\}^n$ then C(x|y) is the length of the shortest TM that, on input y, prints out x. Note that $C(x|y) \le n + O(1)$.

3. A string is Kolmogorov random if $C(x) \ge n$. A string is Kolmogorov random relative to y if $C(x|y) \ge n$.

Do you like these definitions?

Like-Dislike-Like

Like The definition works in that a string with some sort of pattern will have low randomness.

(ロト (個) (E) (E) (E) (E) のへの

Like-Dislike-Like

Like The definition works in that a string with some sort of pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will all give different values. Want a def that is **model-independent**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Like The definition works in that a string with some sort of pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will all give different values. Want a def that is **model-independent**.

Like Translating a program from Java to Python to \cdots is only CONSTANT overhead. If C(x) = n in Java then C(x) will be $n \pm O(1)$ in Python. This will be good enough for our purposes.

Like The definition works in that a string with some sort of pattern will have low randomness.

Dislike Java-Random, Python-Random, 1-tape-TM-Random will all give different values. Want a def that is **model-independent**.

Like Translating a program from Java to Python to \cdots is only CONSTANT overhead. If C(x) = n in Java then C(x) will be $n \pm O(1)$ in Python. This will be good enough for our purposes. **Convention** We pick one model, TMs, and note that our results are up to an O(1).

ション ふゆ アメリア メリア しょうくしゃ

Do Random Strings Exist?

Is there a string of length *n* that has $C(x) \ge n$?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Do Random Strings Exist?

Is there a string of length *n* that has $C(x) \ge n$? Think about with Neighbor

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Do Random Strings Exist? (cont)

Thm For all $n \in \mathbb{N}$ there is a string of length *n* that has $C(x) \ge n$. How many strings are there of length *n*? 2^n .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Do Random Strings Exist? (cont)

Thm For all $n \in \mathbb{N}$ there is a string of length n that has $C(x) \ge n$. How many strings are there of length n? 2^n .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

How many TMs are there of length $\leq n - 1$? $2^0 + \cdots + 2^{n-1} = 2^n - 1$. **Thm** For all $n \in \mathbb{N}$ there is a string of length *n* that has $C(x) \ge n$. How many strings are there of length *n*? 2^n .

How many TMs are there of length $\leq n - 1$? $2^0 + \cdots + 2^{n-1} = 2^n - 1$.

Map all elements of $\{0,1\}^n$ to the shortest program that prints it out. Since there are 2^n strings and only $2^n - 1$ programs of length $\leq n - 1$ some string maps to a program of length $\geq n$.

Lemma $(\forall M \in \mathbb{N})(\exists M_0 \in \mathbb{N})$:

$(\forall n \geq M_0)[C(n) \geq M]$

Proof is easy and omitted. The point is that past some point the Kolg complexity gets bigger.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Application of Kolmogorov Complexity to Proving Languages Not Regular

ション ふゆ アメリア メリア しょうくしゃ

$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

$L_1 = \{a^n b^n : n \in \mathbb{N}\}$ is Not Regular

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let *n* be a number such that C(n) is large (we say how large later).

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let *n* be a number such that C(n) is large (we say how large later). We describe a short machine that prints out *n*.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let n be a number such that C(n) is large (we say how large later). We describe a short machine that prints out n.

This step is preprocessing. Feed a^n into M. It ends in state r.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let n be a number such that C(n) is large (we say how large later). We describe a short machine that prints out n.

This step is preprocessing. Feed a^n into M. It ends in state r.

Key b^n is the **only** string x such that $\delta(r, x) \in F$.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let *n* be a number such that C(n) is large (we say how large later). We describe a short machine that prints out *n*.

This step is preprocessing. Feed a^n into M. It ends in state r.

Key b^n is the **only** string x such that $\delta(r, x) \in F$.

The following program prints out *n*. Compute $\delta(r, b)$, $\delta(r, bb)$, \cdots until find an *m* such that $\delta(r, b^m) \in F$. Print out *m*.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let *n* be a number such that C(n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed a^n into M. It ends in state r.

Key b^n is the **only** string x such that $\delta(r, x) \in F$.

The following program prints out *n*. Compute $\delta(r, b)$, $\delta(r, bb)$, \cdots until find an *m* such that $\delta(r, b^m) \in F$. Print out *m*.

Since the **only** extension of a^n that is in L_1 is $a^n b^n$, m = n. Hence the program prints out n.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let n be a number such that C(n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed a^n into M. It ends in state r.

Key b^n is the **only** string x such that $\delta(r, x) \in F$.

The following program prints out *n*. Compute $\delta(r, b)$, $\delta(r, bb)$, \cdots until find an *m* such that $\delta(r, b^m) \in F$. Print out *m*.

Since the **only** extension of a^n that is in L_1 is $a^n b^n$, m = n. Hence the program prints out n.

What is the length of the program? To describe the program all you need is M (size O(1)) and some O(1) code. The program is of size O(1), say A.

Assume L_1 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let n be a number such that C(n) is large (we say how large later).

We describe a short machine that prints out n.

This step is preprocessing. Feed a^n into M. It ends in state r.

Key b^n is the **only** string x such that $\delta(r, x) \in F$.

The following program prints out *n*. Compute $\delta(r, b)$, $\delta(r, bb)$, \cdots until find an *m* such that $\delta(r, b^m) \in F$. Print out *m*.

Since the **only** extension of a^n that is in L_1 is $a^n b^n$, m = n. Hence the program prints out n.

What is the length of the program? To describe the program all you need is M (size O(1)) and some O(1) code. The program is of size O(1), say A.

Pick *n* such that C(n) > A. Then you have a program of size A < C(n) printing out *n*, which is a contradiction.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

ション ふゆ アメビア メロア しょうくり

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

ション ふゆ アメビア メロア しょうくり

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

This step is preprocessing. Feed a^{p_i} into M. It ends in state r.

ション ふゆ アメビア メロア しょうくり

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

This step is preprocessing. Feed a^{p_i} into M. It ends in state r.

Key 0 $a^{p_i}a^{p_{i+1}-p_i} \in L_2$.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

This step is preprocessing. Feed a^{p_i} into M. It ends in state r.

Key 0 $a^{p_i}a^{p_{i+1}-p_i} \in L_2$.

Key 1 $a^{p_i}a^{p_{i+1}-p_i-1} \notin L_2$.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

This step is preprocessing. Feed a^{p_i} into M. It ends in state r.

Key 0 $a^{p_i}a^{p_{i+1}-p_i} \in L_2$. Key 1 $a^{p_i}a^{p_{i+1}-p_i-1} \notin L_2$. Key 2 $a^{p_i}a^{p_{i+1}-p_i-2} \notin L_2$.

Assume L_2 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p_i be the *i*th prime. Lemma For all N there exists *i* such that $p_{i+1} - p_i \ge N$. Pf There are no primes between (N+1)! + 2 and (N+1)! + N + 1. And Now Back to Our Proof

Let *i* be a number such that $C(p_{i+1} - p_i)$ is large (we say how large later).

We describe a short machine that prints out $p_{i+1} - p_i$.

This step is preprocessing. Feed a^{p_i} into M. It ends in state r.

Key 0 $a^{p_i}a^{p_{i+1}-p_i} \in L_2$. Key 1 $a^{p_i}a^{p_{i+1}-p_i-1} \notin L_2$. Key 2 $a^{p_i}a^{p_{i+1}-p_i-2} \notin L_2$. Real Key $a^{p_{i+1}-p_i}$ is the shortest string x such that $a^{p_i}x \in L_2$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The following program prints out $p_{i+1} - p_i$. Compute $\delta(r, a)$, $\delta(r, aa)$, \cdots until find FIRST m such that $\delta(r, a^m) \in F$. Print out m.

The following program prints out $p_{i+1} - p_i$. Compute $\delta(r, a)$, $\delta(r, aa)$, \cdots until find FIRST m such that $\delta(r, a^m) \in F$. Print out m.

Since the smallest *m* such that $a^{p_i+m} \in L_2$ is $p_{i+1} - p_i$, this program will print out

$$p_{i+1} - p_i$$

ション ふゆ アメビア メロア しょうくり

The following program prints out $p_{i+1} - p_i$. Compute $\delta(r, a)$, $\delta(r, aa)$, \cdots until find FIRST m such that $\delta(r, a^m) \in F$. Print out m.

Since the smallest *m* such that $a^{p_i+m} \in L_2$ is $p_{i+1} - p_i$, this program will print out

$$p_{i+1} - p_i$$

What is the length of the program? To describe the program all you need is M and some O(1) code. The program is of size O(1), say A.

ション ふゆ アメビア メロア しょうくり

The following program prints out $p_{i+1} - p_i$. Compute $\delta(r, a)$, $\delta(r, aa)$, \cdots until find FIRST m such that $\delta(r, a^m) \in F$. Print out m.

Since the smallest *m* such that $a^{p_i+m} \in L_2$ is $p_{i+1} - p_i$, this program will print out

$$p_{i+1} - p_i$$

What is the length of the program? To describe the program all you need is M and some O(1) code. The program is of size O(1), say A.

Pick *i* such that $C(p_{i+1} - p_i) \ge A$. Then you have a program of size $A < C(p_{i+1} - p_i)$ printing out $p_{i+1} - p_i$ which is a contradiction.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p be a large prime (we say how large later).

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p be a large prime (we say how large later). We describe a short machine that prints out p.

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p be a large prime (we say how large later). We describe a short machine that prints out p. This step is preprocessing. Feed $a^{(p-1)!}$ into M. It ends in state r.

ション ふゆ アメビア メロア しょうくり

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$. Let p be a large prime (we say how large later). We describe a short machine that prints out p. This step is preprocessing. Feed $a^{(p-1)!}$ into M. It ends in state r. Key 1 $a^{(p-1)!}b \in L_3$ AND $a^{(p-1)!}b^p \in L_3$.

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed $a^{(p-1)!}$ into M. It ends in state r. Key 1 $a^{(p-1)!}b \in L_3$ AND $a^{(p-1)!}b^p \in L_3$. Key 2 $a^{(p-1)!}b^2 \notin L_3$.

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed $a^{(p-1)!}$ into M. It ends in state r. Key 1 $a^{(p-1)!}b \in L_3$ AND $a^{(p-1)!}b^p \in L_3$. Key 2 $a^{(p-1)!}b^2 \notin L_3$. Key 3 $a^{(p-1)!}b^3 \notin L_3$.

Assume L_3 is regular via $M = (Q, \{a, b\}, \delta, s, F)$.

Let p be a large prime (we say how large later).

We describe a short machine that prints out p.

This step is preprocessing. Feed $a^{(p-1)!}$ into M. It ends in state r. Key 1 $a^{(p-1)!}b \in L_3$ AND $a^{(p-1)!}b^p \in L_3$. Key 2 $a^{(p-1)!}b^2 \notin L_3$. Key 3 $a^{(p-1)!}b^3 \notin L_3$.

Real Key p is the smallest $m \ge 2$ such that $a^{(p-1)!}b^m \in L_3$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ◆□▶

The following program prints out p. Compute $\delta(r, b^2)$, $\delta(r, b^3)$, \cdots until find FIRST $m \ge 2$ such that $\delta(r, b^m) \in F$. Print out m.

ション ふゆ アメビア メロア しょうくり

The following program prints out p. **Compute** $\delta(r, b^2)$, $\delta(r, b^3)$, \cdots **until find FIRST** $m \ge 2$ such that $\delta(r, b^m) \in F$. Print out m. From comments above m = p.

ション ふゆ アメビア メロア しょうくり

The following program prints out *p*.

Compute $\delta(r, b^2)$, $\delta(r, b^3)$, \cdots until find FIRST $m \ge 2$ such that $\delta(r, b^m) \in F$. Print out m.

From comments above m = p.

What is the length of the program? To describe the program all you need is M and some O(1) code. The program is of size O(1), say A.

The following program prints out *p*.

Compute $\delta(r, b^2)$, $\delta(r, b^3)$, \cdots until find FIRST $m \ge 2$ such that $\delta(r, b^m) \in F$. Print out m.

From comments above m = p.

What is the length of the program? To describe the program all you need is M and some O(1) code. The program is of size O(1), say A.

Pick prime p such that $C(p) \ge A$. Then you have a program of size A < C(p) printing out p which is a contradiction.

- ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

1. Proves that other langs are not regular.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. Proves that other langs are not regular.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. Proves that langs are not CFG.

- 1. Proves that other langs are not regular.
- 2. Proves that langs are not CFG.
- 3. Can use it to show some langs require a large DFA, NFA, CFG, TM.

- 1. Proves that other langs are not regular.
- 2. Proves that langs are not CFG.
- 3. Can use it to show some langs require a large DFA, NFA, CFG, TM.
- 4. Can use in proves of average case analysis. If an algorithm runs in time BLAH on a Kolg random input, then its average case is BLAH.

BILL AND NATHAN STOP RECORDING LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE !!!

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()