The \emptyset -Problem and the Σ^* -Problem

May 2, 2024

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For all of the classes of problems studied this semester we ask the following two questions

(ロト (個) (E) (E) (E) (E) のへの

Goals

For all of the classes of problems studied this semester we ask the following two questions

1. Is the Ø-problems solvable?

(Given *M* determine if $L(M) = \emptyset$.)

Goals

For all of the classes of problems studied this semester we ask the following two questions

ション ふゆ アメリア メリア しょうくしゃ

- 1. Is the \emptyset -problems solvable? (Given *M* determine if $L(M) = \emptyset$.)
- 2. Is the Σ^* -problems solvable? (Given *M* determine if $L(M) = \Sigma^*$.)

Goals

For all of the classes of problems studied this semester we ask the following two questions

ション ふゆ アメリア メリア しょうくしゃ

- 1. Is the \emptyset -problems solvable? (Given *M* determine if $L(M) = \emptyset$.)
- 2. Is the Σ^* -problems solvable? (Given *M* determine if $L(M) = \Sigma^*$.)

We will also look at the complexity of these problems.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from the start state to some final state.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given a NFA M, can we tell if $L(M) = \emptyset$?

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

ション ふゆ アメリア メリア しょうくしゃ

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a regex α , can we tell if $L(\alpha) = \emptyset$?

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a regex α , can we tell if $L(\alpha) = \emptyset$? Yes Convert to an NFA M and test $L(M) = \emptyset$. Complexity Linear.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a regex α , can we tell if $L(\alpha) = \emptyset$? Yes Convert to an NFA M and test $L(M) = \emptyset$. Complexity Linear. Caveat Might be easier.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a regex α , can we tell if $L(\alpha) = \emptyset$? Yes Convert to an NFA M and test $L(M) = \emptyset$. Complexity Linear. Caveat Might be easier. The only way for $L(\alpha) = \emptyset$ is if \emptyset is in it.

Given a DFA M, can we tell if $L(M) = \emptyset$?

Yes Det. if there is a path from **the** start state to **some** final state. **Complexity** This is reachability prob. Linear in numb. of states.

Given a NFA M, can we tell if $L(M) = \emptyset$? Yes Same exact algorithm, so still linear time.

Given a regex α , can we tell if $L(\alpha) = \emptyset$? Yes Convert to an NFA M and test $L(M) = \emptyset$. Complexity Linear. **Caveat** Might be easier. The only way for $L(\alpha) = \emptyset$ is if \emptyset is in it. Alg Scan for \emptyset and simplify expression. See if have \emptyset in the end.

Given a DFA M, can we tell if $L(M) = \Sigma^*$?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given a DFA *M*, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA *M*, can we tell if $L(M) = \Sigma^*$?

ション ふゆ アメリア メリア しょうくしゃ

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA *M*, can we tell if $L(M) = \Sigma^*$? Yes Convert to DFA and Solve. 2^{*n*} time. Better?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA M, can we tell if $L(M) = \Sigma^*$? Yes Convert to DFA and Solve. 2^n time. Better? Vote Known-Poly, Known-NPC, Known-harder, Unknown!

ション ふゆ アメビア メロア しょうくしゃ

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA M, can we tell if $L(M) = \Sigma^*$? Yes Convert to DFA and Solve. 2^n time. Better? Vote Known-Poly, Known-NPC, Known-harder, Unknown! Complexity PSPACE-complete. So likely harder than NP.

ション ふゆ アメビア メロア しょうくしゃ

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA M, can we tell if $L(M) = \Sigma^*$? Yes Convert to DFA and Solve. 2^n time. Better? Vote Known-Poly, Known-NPC, Known-harder, Unknown! Complexity PSPACE-complete. So likely harder than NP.

ション ふゆ アメビア メロア しょうくしゃ

Given a regex α , can we tell if $L(\alpha) = \Sigma^*$?

Given a DFA M, can we tell if $L(M) = \Sigma^*$? Yes Complement and Solve \emptyset problem. Complexity Linear.

Given a NFA *M*, can we tell if $L(M) = \Sigma^*$? Yes Convert to DFA and Solve. 2^{*n*} time. Better? Vote Known-Poly, Known-NPC, Known-harder, Unknown! Complexity PSPACE-complete. So likely harder than NP.

Given a regex α , can we tell if $L(\alpha) = \Sigma^*$? Yes Convert to an NFA *M* and test $L(M) = \emptyset$. PSPACE-complete.

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$?

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable. So is $L(G) = \emptyset$ decidable?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Given a CFG *G* in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable. So is $L(G) = \emptyset$ decidable? Vote

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

So is $L(G) = \emptyset$ decidable?

Vote

1. Known: P

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC
- 3. Known: Decidable but likely harder than NP

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC
- 3. Known: Decidable but likely harder than NP
- 4. Known: Decidable and known to be harder than NP

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC
- 3. Known: Decidable but likely harder than NP
- 4. Known: Decidable and known to be harder than NP

ション ふゆ アメビア メロア しょうくしゃ

5. Known: Undecidable

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC
- 3. Known: Decidable but likely harder than NP
- 4. Known: Decidable and known to be harder than NP

ション ふゆ アメビア メロア しょうくしゃ

- 5. Known: Undecidable
- 6. Unknown to Science!

Given a CFG G in Chomsky Normal Form, can we tell if $L(G) = \emptyset$? We know $L(G) = \Sigma^*$ is undecidable.

So is $L(G) = \emptyset$ decidable?

Vote

- 1. Known: P
- 2. Known: NPC
- 3. Known: Decidable but likely harder than NP
- 4. Known: Decidable and known to be harder than NP

ション ふゆ アメビア メロア しょうくしゃ

- 5. Known: Undecidable
- 6. Unknown to Science!

Answer on Next Page.

Known: P

くして 通 (声) (声) (中) (中)
1. Input G a CFG in Chomsky Normal Form.

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

3. For all rules of the form $A \rightarrow \sigma$, mark A.

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.
- **3**. For all rules of the form $A \rightarrow \sigma$, mark A.
- 4. For all rules of the form $A \rightarrow BC$ if B, C are marked, then mark A.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.
- 3. For all rules of the form $A \rightarrow \sigma$, mark A.
- 4. For all rules of the form $A \rightarrow BC$ if B, C are marked, then mark A.

4.1 If S is marked then output YES and HALT.

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.
- 3. For all rules of the form $A \rightarrow \sigma$, mark A.
- 4. For all rules of the form $A \rightarrow BC$ if B, C are marked, then mark A.
 - 4.1 If S is marked then output YES and HALT.
 - 4.2 If no new nonterms are marked then output NO and HALT.

ション ふゆ アメビア メロア しょうくしゃ

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.
- **3**. For all rules of the form $A \rightarrow \sigma$, mark A.
- 4. For all rules of the form $A \rightarrow BC$ if B, C are marked, then mark A.
 - 4.1 If S is marked then output YES and HALT.
 - 4.2 If no new nonterms are marked then output NO and HALT.
 - 4.3 If a new nonterm is marked but its not S then repeat Step 4.

ション ふゆ アメビア メロア しょうくしゃ

- 1. Input G a CFG in Chomsky Normal Form.
- 2. Our algorithm will **mark** every nonterm that generates some string. At the end we see if *S* is marked.
- 3. For all rules of the form $A \rightarrow \sigma$, mark A.
- 4. For all rules of the form $A \rightarrow BC$ if B, C are marked, then mark A.
 - 4.1 If S is marked then output YES and HALT.
 - 4.2 If no new nonterms are marked then output NO and HALT.
 - 4.3 If a new nonterm is marked but its not S then repeat Step 4.

ション ふゆ アメビア メロア しょうくしゃ

Numb of iterations \leq numb of nonterms, so alg is poly time.

As shown in a prior lecture, the problem of given a CFL does it equal Σ^\ast is undecidable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

As shown in a prior lecture, the problem of given a CFL does it equal Σ^\ast is undecidable.

The key step was an algorithm for the following:

As shown in a prior lecture, the problem of given a CFL does it equal Σ^\ast is undecidable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The key step was an algorithm for the following:

Given (e, x) output a CFL for $\overline{ACC_{e,x}}$.

We need a way to represent languages in P.

We need a way to represent languages in P. We take TM along with a poly p.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We need a way to represent languages in P. We take TM along with a poly p. $L(M, p) = \{x : M(x) \downarrow = 1 \text{ within time } p(|x|) \}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We need a way to represent languages in P. We take TM along with a poly *p*. $L(M, p) = \{x : M(x) \downarrow = 1 \text{ within time } p(|x|) \}$ Is the following decidable: Given *M*, *p*, is $L(M, p) = \emptyset$?

We need a way to represent languages in P. We take TM along with a poly *p*. $L(M,p) = \{x : M(x) \downarrow = 1 \text{ within time } p(|x|) \}$ Is the following decidable: Given *M*, *p*, is $L(M,p) = \emptyset$? **No**.

We need a way to represent languages in P. We take TM along with a poly *p*. $L(M,p) = \{x : M(x) \downarrow = 1 \text{ within time } p(|x|) \}$ Is the following decidable: Given *M*, *p*, is $L(M,p) = \emptyset$? **No**.

We give two proofs.

Proof 1: Use CFG- \emptyset

|▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Proof 1: Use CFG- \emptyset

1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Proof 1: Use CFG- \emptyset

1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)

2. Create Poly time TM M for $\overline{L(G)}$.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- 2. Create Poly time TM *M* for $\overline{L(G)}$. (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L(G)*.
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L(G)*.
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

ション ふゆ アメビア メロア しょうくしゃ

3. Comment

$$L(G) = \Sigma^* \rightarrow \overline{L(G)} = \emptyset \rightarrow L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \rightarrow \overline{L(G)} \neq \emptyset \rightarrow L(M, p) \neq \emptyset.$$

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L(G)*. (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.) Let *p* be its run time.

ション ふゆ アメビア メロア しょうくしゃ

3. Comment

$$L(G) = \Sigma^* \rightarrow \overline{L(G)} = \emptyset \rightarrow L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \rightarrow \overline{L(G)} \neq \emptyset \rightarrow L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L(G)*.
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3. Comment

$$L(G) = \Sigma^* \to \overline{L(G)} = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L(G)} \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L*(*G*).
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

.

ション ふぼう メリン メリン しょうくしゃ

3. **Comment**

$$L(G) = \Sigma^* \to \underline{L}(G) = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L}(G) \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES. If NO then output NO.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L(G)*.
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

3. Comment

$$L(G) = \Sigma^* \to \overline{L(G)} = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L(G)} \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES. If NO then output NO.

Interesting since we are NOT using HALT.

- 1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)
- Create Poly time TM *M* for *L*(*G*).
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

3. Comment

$$L(G) = \Sigma^* \to \overline{L(G)} = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L(G)} \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES. If NO then output NO.

Interesting since we are NOT using HALT. Contrast:

1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)

Create Poly time TM *M* for *L*(*G*).
 (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.)
 Let *p* be its run time.

3. Comment

$$L(G) = \Sigma^* \to \overline{L(G)} = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L(G)} \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES. If NO then output NO.

Interesting since we are NOT using HALT.

Contrast:

Common to **not** use SAT to show a problem NPC.

1. Input CFG G. (We want to know if $L(G) = \Sigma^*$.)

 Create Poly time TM *M* for *L*(*G*). (The Dynamic Programming Algorithm from CYK, but at the end reverse the answers.) Let *p* be its run time.

3. Comment

$$L(G) = \Sigma^* \to \overline{L(G)} = \emptyset \to L(M, p) = \emptyset.$$

$$L(G) \neq \Sigma^* \to \overline{L(G)} \neq \emptyset \to L(M, p) \neq \emptyset.$$

4. Using ALG find if $L(M, p) = \emptyset$. If YES then output YES. If NO then output NO.

Interesting since we are NOT using HALT.

Contrast:

Common to **not** use SAT to show a problem NPC.

Uncommon to not use HALT to show a problem UNDEC.

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1. Input e, x. (We want to know if $M_e(x) \downarrow$.)

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

1. Input e, x. (We want to know if $M_e(x) \downarrow$.)

2. Create a machine M and poly p as follows:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

ション ふゆ アメビア メロア しょうくしゃ

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.
Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $O(s \log s) \le s^2$ time.)

ション ふゆ アメビア メロア しょうくしゃ

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:
 - 2.1 Input 1^s (This is $1 \cdots 1$.)
 - 2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $O(s \log s) \le s^2$ time.)

ション ふゆ アメビア メロア しょうくしゃ

2.3 If $M_{e,s}(x) \downarrow$ then output YES. If not then output NO.

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $O(s \log s) \le s^2$ time.)

ション ふゆ アメビア メロア しょうくしゃ

2.3 If $M_{e,s}(x) \downarrow$ then output YES. If not then output NO.

3. Test if $L(M, n^2) = \emptyset$.

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $O(s \log s) \le s^2$ time.)

2.3 If $M_{e,s}(x) \downarrow$ then output YES. If not then output NO.

3. Test if
$$L(M, n^2) = \emptyset$$
.

3.1 If $L(M, n^2) = \emptyset$ then output NO $(M_e(x) \uparrow)$.

Assume, BWOC, that $L(M, p) = \emptyset$ problem is DEC. We also take $\Sigma = \{1\}$. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input
$$1^s$$
 (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $O(s \log s) \le s^2$ time.)

2.3 If $M_{e,s}(x) \downarrow$ then output YES. If not then output NO.

3. Test if
$$L(M, n^2) = \emptyset$$
.

3.1 If $L(M, n^2) = \emptyset$ then output NO $(M_e(x) \uparrow)$.

3.2 If $L(M, n^2) \neq \emptyset$ then output YES $(M_e(x) \downarrow)$.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$?

P: Σ^*

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへぐ

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No. Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No. Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We show that HALT is DEC.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

1. Input e, x. (We want to know if $M_e(x) \downarrow$.)

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

*ロト *目 * * * * * * * * * * * * * * *

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

ション ふゆ アメビア メロア しょうくしゃ

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^{s} (This is $1 \cdots 1$.)

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

ション ふゆ アメビア メロア しょうくしゃ

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:
 - 2.1 Input 1^s (This is $1 \cdots 1$.)
 - 2.2 Run $M_e(x)$ for s steps.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:
 - 2.1 Input 1^s (This is $1 \cdots 1$.)
 - 2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $s \log s \le s^2$ time.)

ション ふゆ アメリア メリア しょうくしゃ

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:
 - 2.1 Input 1^s (This is $1 \cdots 1$.)
 - 2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $s \log s \le s^2$ time.)

ション ふゆ アメリア メリア しょうくしゃ

2.3 If $M_{e,s}(x) \downarrow$ then output NO. If not then output YES.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $s \log s \le s^2$ time.)

2.3 If $M_{e,s}(x) \downarrow$ then output NO. If not then output YES.

3. Test if $L(M, n^2) = \Sigma^*$.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $s \log s \le s^2$ time.)

2.3 If $M_{e,s}(x) \downarrow$ then output NO. If not then output YES.

3. Test if
$$L(M, n^2) = \Sigma^*$$
.

3.1 If $L(M, n^2) = \Sigma^*$ then output NO $(M_e(x) \uparrow)$.

Is the following decidable: Given M, p, is $L(M, p) = \Sigma^*$? No.

Assume, BWOC, that $L(M, p) = \Sigma^*$ is DEC. We show that HALT is DEC.

- 1. Input e, x. (We want to know if $M_e(x) \downarrow$.)
- 2. Create a machine M and poly p as follows:

2.1 Input 1^s (This is $1 \cdots 1$.)

2.2 Run $M_e(x)$ for s steps.

(For technical reasons this take $s \log s \le s^2$ time.)

2.3 If $M_{e,s}(x) \downarrow$ then output NO. If not then output YES.

3. Test if
$$L(M, n^2) = \Sigma^*$$
.

3.1 If $L(M, n^2) = \Sigma^*$ then output NO $(M_e(x) \uparrow)$. 3.2 If $L(M, n^2) \neq \Sigma^*$ then output YES $(M_e(x) \downarrow)$.

NP, DEC, Σ_1

NP, DEC, Σ_1

For NP, DEC, Σ_1 the $L(M) = \emptyset$ is undecidable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

NP, DEC, Σ_1

For NP, DEC, Σ_1 the $L(M) = \emptyset$ is undecidable. For NP, DEC, Σ_1 the $L(M) = \Sigma^*$ is undecidable.

・ロト・日本・モト・モト・モー うへぐ

For NP, DEC, Σ_1 the $L(M) = \emptyset$ is undecidable. For NP, DEC, Σ_1 the $L(M) = \Sigma^*$ is undecidable. Proofs are similar to that for P.

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

Given M does there exist n such that $\Sigma^n \subseteq L(M)$? 1. For DFA this problem is NP-complete.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but **Open** as to whether or not its in PSPACE .

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. For CFG this problem is PSPACE-hard but **Open** as to whether or not its in PSPACE .

Interesting Very few problems about CFG's are open.

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. For CFG this problem is PSPACE-hard but **Open** as to whether or not its in PSPACE .

Interesting Very few problems about CFG's are open. For P, NP, DEC, Σ_1 , Undecidable.

Given *M* does there exist *n* such that $\Sigma^n \subseteq L(M)$?

1. For DFA this problem is NP-complete.

Interesting Very few problems about DFAs are NP-complete.

2. For CFG this problem is PSPACE-hard but **Open** as to whether or not its in PSPACE .

Interesting Very few problems about CFG's are open.

For P, NP, DEC, Σ_1 , Undecidable.

Boring Most problems about P, NP, DEC, Σ_1 are undecidable.