Review for CMSC 452 Midterm: Grammars

Context Free Languages

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Examples of Context Free Grammars

$S \rightarrow a S b$
$S \rightarrow e$

The set of all strings Generated is

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Note L is context free lang that is not regular.

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& S \rightarrow a a S b \\
& S \rightarrow e
\end{aligned}
$$

The set of all strings Generated is

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& S \rightarrow a a S b \\
& S \rightarrow e
\end{aligned}
$$

The set of all strings Generated is

$$
L=\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}
$$

Context Free Grammar for $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& S \rightarrow a a S b \\
& S \rightarrow e
\end{aligned}
$$

The set of all strings Generated is

$$
L=\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}
$$

Note L is context free lang that is not regular.

Context Free Grammar for $\left\{a^{m} b^{n}: m>n\right\}$

Context Free Grammar for $\left\{a^{m} b^{n}: m>n\right\}$

$$
\begin{aligned}
& S \rightarrow A T \\
& T \rightarrow a T b \\
& T \rightarrow e \\
& A \rightarrow A a \\
& A \rightarrow a
\end{aligned}
$$

Context Free Grammars

Def A Context Free Grammar is a tuple $G=(N, \Sigma, R, S)$

- N is a finite set of nonterminals.
- Σ is a finite alphabet. Note $\Sigma \cap N=\emptyset$.
- $R \subseteq N \times(N \cup \Sigma)^{*}$ and are called Rules.
- $S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α.

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α. Examples:

- $A \Rightarrow a$
- $A \Rightarrow a B$

L(G)

If A is non-terminal then the CFG gives us gives us rules like:

- $A \rightarrow A B$
- $A \rightarrow a$

For any string of terminals and non-terminals $\alpha, A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α. Examples:

- $A \Rightarrow a$
- $A \Rightarrow a B$

Then, if w is string of non-terminals only, we define $L(G)$ by:

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow w\right\}
$$

Number of a 's $=$ Number of b 's

Is

$$
L=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}
$$

context free?

YES

$$
\begin{aligned}
& \text { Let } G \text { be the CFG } \\
& S \rightarrow a S b \\
& S \rightarrow b S a \\
& S \rightarrow S S \\
& S \rightarrow e
\end{aligned}
$$

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
$\operatorname{Thm} L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.

YES

Let G be the CFG
$S \rightarrow a S b$
$S \rightarrow b S a$
$S \rightarrow S S$
$S \rightarrow e$
$\operatorname{Thm} L(G)=\left\{w \mid \#_{a}(w)=\#_{b}(w)\right\}$.
Note This Theorem is not obvious. Deserves a proof! But I won't give one.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}$ is NOT a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is NOT a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is NOT a CFL.
3) If $L \subseteq a^{*}$ and L is not regular than L is not a CFL.

Example of a Lang that is NOT a CFL

1) $\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}$ is NOT a CFL.
2) $\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is NOT a CFL.
3) If $L \subseteq a^{*}$ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL's (next slide).

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.
3. For all $i \geq 0, u v^{i} x y^{i} z \in L$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.
3. For all $i \geq 0, u v^{i} x y^{i} z \in L$.

Proof involves looking at the Parse Tree for w and finding some nonterminal T twice in the tree. We will not be doing the proof.

Closure Properties and REG $\subset C F L$

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cup L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
$C F L$ for $L_{1} \cup L_{2}$:
Just add $S \rightarrow S_{1}$ and $S \rightarrow S_{2}$ to union of grammars.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cap L_{2} \mathrm{CFL}$

NOT TRUE: $a^{n} b^{n} c^{*} \cap a^{*} b^{n} c^{n}=a^{n} b^{n} c^{n}$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.

$L_{1}, L_{2} \mathrm{CFL} \rightarrow L_{1} \cdot L_{2} \mathrm{CFL}$

L_{1} is CFL via CFG $\left(N_{1}, \Sigma, R_{1}, S_{1}\right)$.
L_{2} is CFL via CFG $\left(N_{2}, \Sigma, R_{2}, S_{2}\right)$.
$C F L$ for $L_{1} \cup L_{2}$:
Just add $S \rightarrow S_{1} S_{2}$ to union of grammars.

$L C F L \rightarrow \bar{L} C F L$

FALSE.
Let

$$
L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}
$$

$\angle C F L \rightarrow \bar{L} C F L$

FALSE.
Let

$$
L=\overline{\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}\right\}}
$$

This is a CFL. This will a HW.

$L C F L \rightarrow L^{*}$ CFL

L is CFL via CFG (N, Σ, R, S).

$L C F L \rightarrow L^{*} C F L$

L is CFL via CFG (N, Σ, R, S).
This one I leave to you to look up my slides on it.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.

REG contained in CFL

For every regex $\alpha, L(\alpha)$ is a CFL.
Prove by ind on the length of α.
We omit from this review.

Examples of CFL's and Size of CFG's

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
3) $S \rightarrow e$ (where S is the start state).

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates $\{$ aaaaaaaa $\}$ $S \rightarrow A A$

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates \{aaaaaaaa\} $S \rightarrow A A$
$A \rightarrow B B$

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates \{aaaaaaaa\}
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$

Example of Chomsky Normal Form

> Chomsky Normal form CFG that generates \{aaaaaaá $\}$
> $S \rightarrow A A$
> $A \rightarrow B B$
> $B \rightarrow C C$
> $C \rightarrow a$

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates \{aaaaaaaa\}
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$
$C \rightarrow a$
So \{aaaaaaaa\} has a CFG of size 4.

Example of Chomsky Normal Form

Chomsky Normal form CFG that generates \{aaaaaaaa
$S \rightarrow A A$
$A \rightarrow B B$
$B \rightarrow C C$
$C \rightarrow a$
So \{aaaaaaaa\} has a CFG of size 4.
By the same trick \exists a CFG for $\left\{a^{n}\right\}$ of size $O(\log n)$.

- Any DFA or NFA that recognizes $\left\{a^{n}\right\}$ has $n+\Omega(1)$ states.
- There is a CFG that generates $\left\{a^{n}\right\}$ with $O(\log n)$ rules.

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$
$\{a, b\}^{*} a$. Has 5-rule CFG:

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$
$\{a, b\}^{*} a$. Has 5-rule CFG:
$a\{a, b\}^{n}$. A $O(\log n)$ rule CFG.

$\{a, b\}^{*} a\{a, b\}^{n}$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly $n+2$ states.
2) CFG: We obtain $O(\log n)$ size.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$
$\{a, b\}^{*} a$. Has 5-rule CFG:
$a\{a, b\}^{n}$. A $O(\log n)$ rule CFG.
$\{a, b\}^{*}$ CONCAT $a\{a, b\}^{n}$ has $O(\log n)$ rule CFG.

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

Use nonterminals $[a T],[b],[a]$. Replace $T \rightarrow a T b$ with:
$T \rightarrow[a T][b]$
$[a T] \rightarrow[a] T$
$[b] \rightarrow b$.
[a] $\rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\left\{a^{m} b^{n}: m>n\right\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow A T$
2) $T \rightarrow a T b$
3) $T \rightarrow e$
4) $A \rightarrow A a$
5) $A \rightarrow a$

Use nonterminals $[a T],[b],[a]$. Replace $T \rightarrow a T b$ with:
$T \rightarrow[a T][b]$
$[a T] \rightarrow[a] T$
$[b] \rightarrow b$.
$[a] \rightarrow a$
Repeat the process with the other rules.

MISC

1) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.

MISC

1) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
2) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDA: Push Down Automata

They are NFAs with a stack.

MISC

1) If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.
2) Recall: DFA's are Recognizers, Regex are Generators.

CFG's are Generators. There is a Recognizer equivalent to it:
PDA: Push Down Automata

They are NFAs with a stack.
The proof that PDA-recognizers and CFG-generators are equivalent is messy so we won't be doing it. We won't deal with PDA's in this course at all.

CNF for $\{w\}$

4ロ〉4司〉4 三〉4 三

CNF for $\{a a b b b a b\}$

Example CNF for $\{a a b b b a b\}$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$
$[A] \rightarrow a$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$
$[A] \rightarrow a$
$[B] \rightarrow b$

CNF for $\{w\}$

$$
\text { 4ロ>4甸 } 1 \text { 三 }
$$

CNF for $\{w\}$

1. You can do something similar for any w.

CNF for $\{w\}$

1. You can do something similar for any w.
2. If $|w|=n$ then the CFG will be $O(n)$ rules.

CNF for $\{w\}$

1. You can do something similar for any w.
2. If $|w|=n$ then the CFG will be $O(n)$ rules.
3. Question we will come back to LATER: $(\exists w)$ such that $\{w\}$ requires large CFG?

$\mathbf{C F L} \subset \mathbf{P}$

$$
\text { 4ロ〉4句 } 1 \text { ㅍ }
$$

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.
$w=\sigma_{1} \cdots \sigma_{n}$.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.
$w=\sigma_{1} \cdots \sigma_{n}$.
We want to know if $w \in L$. We assume $w \neq e$.

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.
$w=\sigma_{1} \cdots \sigma_{n}$.
We want to know if $w \in L$. We assume $w \neq e$.
For $i \leq j$ let

$$
\operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\}
$$

Poly Time Algorithm for CFG Membership

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.
$w=\sigma_{1} \cdots \sigma_{n}$.
We want to know if $w \in L$. We assume $w \neq e$.
For $i \leq j$ let

$$
\operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\}
$$

We will find all GEN $[i, j]$. Hence we will find GEN[1, $n]$. Hence we will find if $S \in \operatorname{GEN}[1, n]$.

Bottom Up View

Bottom Up View

$$
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{A} \sigma_{i+1} \cdots \sigma_{n}
$$

Bottom Up View

$$
\begin{gathered}
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{A} \sigma_{i+1} \cdots \sigma_{n} \\
\operatorname{GEN}[i, i]=\left\{A: A \rightarrow \sigma_{i}\right\}
\end{gathered}
$$

Bottom Up View

$$
\begin{gathered}
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{A} \sigma_{i+1} \cdots \sigma_{n} \\
\operatorname{GEN}[i, i]=\left\{A: A \rightarrow \sigma_{i}\right\} \\
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{B} \overbrace{\sigma_{i+1}}^{C} \sigma_{i+2} \cdots \sigma_{n}
\end{gathered}
$$

Bottom Up View

$$
\begin{gathered}
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{A} \sigma_{i+1} \cdots \sigma_{n} \\
\operatorname{GEN}[i, i]=\left\{A: A \rightarrow \sigma_{i}\right\} \\
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{B} \overbrace{\sigma_{i+1}}^{C} \sigma_{i+2} \cdots \sigma_{n}
\end{gathered}
$$

$\operatorname{GEN}[i, i+1]=\left\{A: A \rightarrow B C \wedge B \rightarrow \sigma_{i} \wedge C \rightarrow \sigma_{i+1}\right\}$

Bottom Up View

$$
\begin{aligned}
& \sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{A} \sigma_{i+1} \cdots \sigma_{n} \\
& \operatorname{GEN}[i, i]=\left\{A: A \rightarrow \sigma_{i}\right\}
\end{aligned} \quad \begin{aligned}
& \sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i}}^{B} \overbrace{\sigma_{i+1}}^{C} \sigma_{i+2} \cdots \sigma_{n} \\
& \operatorname{GEN}[i, i+1]=\left\{A: A \rightarrow B C \wedge B \rightarrow \sigma_{i} \wedge C \rightarrow \sigma_{i+1}\right\} \\
&=\{A: A \rightarrow B C \\
&\wedge B \in G E N[i, i] \wedge C \in G E N[i+1, i+1]\}
\end{aligned}
$$

Recurrence

Recurrence

$\operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\}$

Recurrence

$\operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\}$

$$
\sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i} \sigma_{i+1} \cdots \sigma_{k}}^{B} \overbrace{\sigma_{k+1} \sigma_{k+2} \cdots \sigma_{j}}^{C} \sigma_{j+1} \cdots \sigma_{n}
$$

Recurrence

$$
\begin{aligned}
& \operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\} \\
& \sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i} \sigma_{i+1} \cdots \sigma_{k}}^{B} \overbrace{\sigma_{k+1} \sigma_{k+2} \cdots \sigma_{j}}^{C} \sigma_{j+1} \cdots \sigma_{n}
\end{aligned}
$$

$$
\operatorname{GEN}[i, j]=\bigcup_{i \leq k<j}\left\{A: A \rightarrow B C \wedge B \Rightarrow \sigma_{i} \cdots \sigma_{k} \wedge C \Rightarrow \sigma_{k+1} \cdots \sigma_{j}\right\}
$$

Recurrence

$$
\begin{aligned}
& \operatorname{GEN}[i, j]=\left\{A: A \Rightarrow \sigma_{i} \cdots \sigma_{j}\right\} \\
& \sigma_{1} \cdots \sigma_{i-1} \overbrace{\sigma_{i} \sigma_{i+1} \cdots \sigma_{k}}^{B} \overbrace{\sigma_{k+1} \sigma_{k+2} \cdots \sigma_{j}}^{C} \sigma_{j+1} \cdots \sigma_{n}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{GEN}[i, j] & =\bigcup_{i \leq k<j}\left\{A: A \rightarrow B C \wedge B \Rightarrow \sigma_{i} \cdots \sigma_{k} \wedge C \Rightarrow \sigma_{k+1} \cdots \sigma_{j}\right\} \\
& =\bigcup_{i \leq k<j}\{A: A \rightarrow B C \wedge B \in \operatorname{GEN}[i, k] \wedge C \in \operatorname{GEN}[k+1, j]\}
\end{aligned}
$$

The Algorithm

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=i \text { to } n \text { do } \\
& \operatorname{GEN}[i, j] \leftarrow \emptyset \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for all rules } \mathrm{A} \rightarrow \sigma_{i} \text { do } \\
& \text { GEN[i,i] } \leftarrow \text { GEN[i,i] with A } \\
& \text { for } s=2 \text { to } n \text { do } \\
& \text { for } i=1 \text { to } n-s+1 \text { do } \\
& \mathrm{j} \leftarrow \mathrm{i}+\mathrm{s}-1 \text { do } \\
& \text { for } k=i \text { to } j-1 \text { do } \\
& \text { for all rules } A \rightarrow B C \\
& \text { where } B \in \operatorname{GEN}[i, k] \text { and } C \in \operatorname{GEN}[k+1, j] \\
& \operatorname{GEN}[i, j] \leftarrow \operatorname{GEN}[i, j] \text { with A }
\end{aligned}
$$

