Review for CMSC 452 Midterm: Grammars

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Context Free Languages

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Examples of Context Free Grammars

S
ightarrow aSbS
ightarrow e

The set of all strings Generated is

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Examples of Context Free Grammars

S
ightarrow aSbS
ightarrow e

The set of all strings Generated is

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Examples of Context Free Grammars

S
ightarrow aSbS
ightarrow e

The set of all strings Generated is

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Note *L* is context free lang that is not regular.

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

 $S
ightarrow aaSb \ S
ightarrow e$

The set of all strings Generated is

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

 $S
ightarrow aaSb \ S
ightarrow e$

The set of all strings Generated is

$$L = \{a^{2n}b^n : n \in \mathbb{N}\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Context Free Grammar for $\{a^{2n}b^n : n \in \mathbb{N}\}$

 $S
ightarrow aaSb \ S
ightarrow e$

The set of all strings Generated is

$$L = \{a^{2n}b^n : n \in \mathbb{N}\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Note *L* is context free lang that is not regular.

Context Free Grammar for $\{a^m b^n : m > n\}$

- イロト イ理ト イヨト イヨト ヨー のへぐ

Context Free Grammar for $\{a^m b^n : m > n\}$

S
ightarrow AT T
ightarrow aTb T
ightarrow e A
ightarrow AaA
ightarrow a

Context Free Grammars

Def A **Context Free Grammar** is a tuple $G = (N, \Sigma, R, S)$

- ► *N* is a finite set of **nonterminals**.
- Σ is a finite **alphabet**. Note $\Sigma \cap N = \emptyset$.
- $R \subseteq N \times (N \cup \Sigma)^*$ and are called **Rules**.
- $S \in N$, the start symbol.

If A is non-terminal then the CFG gives us gives us rules like:

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

$$\blacktriangleright A \Rightarrow a$$

$$\blacktriangleright A \Rightarrow aB$$

If A is non-terminal then the CFG gives us gives us rules like:

$$\blacktriangleright A \to AB$$

$$\blacktriangleright$$
 $A \rightarrow a$

For any string of **terminals and non-terminals** α , $A \Rightarrow \alpha$ means that, starting from A, some combination of the rules produces α . **Examples:**

$$\blacktriangleright A \Rightarrow a$$

$$\blacktriangleright A \Rightarrow aB$$

Then, if w is string of **non-terminals only**, we define L(G) by:

$$L(G) = \{w \in \Sigma^* \mid S \Rightarrow w\}$$

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Number of a's = Number of b's

ls

$$L = \{w \mid \#_a(w) = \#_b(w)\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

context free?

YES

Let G be the CFG $S \rightarrow aSb$ $S \rightarrow bSa$ $S \rightarrow SS$ $S \rightarrow e$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

YES

Let G be the CFG $S \rightarrow aSb$ $S \rightarrow bSa$ $S \rightarrow SS$ $S \rightarrow e$ Thm $L(G) = \{w \mid \#_a(w) = \#_b(w)\}.$

Let G be the CFG $S \rightarrow aSb$ $S \rightarrow bSa$ $S \rightarrow SS$ $S \rightarrow e$ Thm $L(G) = \{w \mid \#_a(w) = \#_b(w)\}.$

Note This Theorem is **not obvious**. Deserves a proof! But I won't give one.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL. 2) $\{a^{n^2} : n \in \mathbb{N}\}$ is NOT a CFL.

{aⁿbⁿcⁿ : n ∈ N} is NOT a CFL.
 {a^{n²} : n ∈ N} is NOT a CFL.
 If L ⊆ a^{*} and L is not regular than L is not a CFL.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1) $\{a^n b^n c^n : n \in \mathbb{N}\}$ is NOT a CFL.
- 2) $\{a^{n^2}: n \in \mathbb{N}\}$ is NOT a CFL.
- 3) If $L \subseteq a^*$ and L is not regular than L is not a CFL.

One proves theorems NON CFL using the PL for CFL's (next slide).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds: For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

1. w = uvxyz and either $v \neq e$ or $y \neq e$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \le n_1$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \leq n_1$.
- 3. For all $i \ge 0$, $uv^i xy^i z \in L$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \leq n_1$.
- 3. For all $i \ge 0$, $uv^i xy^i z \in L$.

Proof involves looking at the Parse Tree for w and finding some nonterminal T twice in the tree. We will not be doing the proof.

Closure Properties and REG CFL

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$L_1, L_2 \text{ CFL} \rightarrow L_1 \cup L_2 \text{ CFL}$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

$L_1, L_2 \text{ CFL} \rightarrow L_1 \cup L_2 \text{ CFL}$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) . CFL for $L_1 \cup L_2$: Just add $S \rightarrow S_1$ and $S \rightarrow S_2$ to union of grammars.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

$L_1, L_2 \text{ CFL} \rightarrow L_1 \cap L_2 \text{ CFL}$

NOT TRUE: $a^n b^n c^* \cap a^* b^n c^n = a^n b^n c^n$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$L_1, L_2 \ \mathsf{CFL} \to L_1 \cdot L_2 \ \mathsf{CFL}$

 L_1 is CFL via CFG (N_1, Σ, R_1, S_1) . L_2 is CFL via CFG (N_2, Σ, R_2, S_2) .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

$L_1, L_2 \ \mathsf{CFL} o L_1 \cdot L_2 \ \mathsf{CFL}$

 $\begin{array}{l} L_1 \text{ is CFL via CFG } (N_1, \Sigma, R_1, S_1). \\ L_2 \text{ is CFL via CFG } (N_2, \Sigma, R_2, S_2). \\ \text{CFL for } L_1 \cup L_2: \\ \text{Just add } S \rightarrow S_1S_2 \text{ to union of grammars.} \end{array}$

$L \operatorname{CFL} \to \overline{L} \operatorname{CFL}$

FALSE. Let

$$L = \overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○
$L \operatorname{CFL} \to \overline{L} \operatorname{CFL}$

FALSE. Let

$$L = \overline{\{a^n b^n c^n : n \in \mathbb{N}\}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

This is a CFL. This will a HW.

$L \text{ CFL} \rightarrow L^* \text{ CFL}$

L is CFL via CFG (N, Σ, R, S) .

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$L \text{ CFL} \rightarrow L^* \text{ CFL}$

L is CFL via CFG (N, Σ, R, S) .

This one I leave to you to look up my slides on it.

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL.

REG contained in CFL

For every regex α , $L(\alpha)$ is a CFL. Prove by ind on the length of α .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

REG contained in CFL

For every **regex** α , $L(\alpha)$ is a CFL. Prove by ind on the length of α . We omit from this review.

Examples of CFL's and Size of CFG's

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

(ロト (個) (E) (E) (E) (E) のへの

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).

・ロト・日本・モト・モト・モー うへぐ

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals). 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
- 3) $S \rightarrow e$ (where S is the start state).

Chomsky Normal form CFG that generates {aaaaaaaa} $S \rightarrow AA$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Chomsky Normal form CFG that generates {aaaaaaaa} $S \rightarrow AA$ $A \rightarrow BB$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Chomsky Normal form CFG that generates $\{aaaaaaaa\}$

- $S \rightarrow AA$
- $A \rightarrow BB$
- $B \rightarrow CC$

Chomsky Normal form CFG that generates {aaaaaaaa}

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- $S \rightarrow AA$
- $A \rightarrow BB$
- $B \rightarrow CC$
- C
 ightarrow a

Chomsky Normal form CFG that generates $\{aaaaaaaa\}$ $S \rightarrow AA$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 $A \rightarrow BB$ $B \rightarrow CC$ $C \rightarrow a$ So {*aaaaaaaa*} has a CFG of size 4.

Chomsky Normal form CFG that generates {aaaaaaaa}

- $S \rightarrow AA$
- $A \rightarrow BB$
- $B \rightarrow CC$
- C
 ightarrow a

So $\{aaaaaaaa\}$ has a CFG of size 4.

By the same trick \exists a CFG for $\{a^n\}$ of size $O(\log n)$.

• Any DFA or NFA that recognizes $\{a^n\}$ has $n + \Omega(1)$ states.

• There is a CFG that generates $\{a^n\}$ with $O(\log n)$ rules.

 ${a,b}^*a{a,b}^n$

1) DFA: exactly 2^{n+1} size DFA. NFA: exactly n+2 states.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 ${a,b}^*a{a,b}^n$

DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 ${a,b}^*a{a,b}^n$

DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.
 {a, b}* CONCAT a{a, b}ⁿ

 ${a,b}^*a{a,b}^n$

DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.
 {a, b}* CONCAT a{a, b}ⁿ

 ${a,b}^*a{a,b}^n$

DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.
 {a, b}* CONCAT a{a, b}ⁿ
 {a, b}*a. Has 5-rule CFG:

ション ふゆ アメリア メリア しょうくしゃ

 ${a,b}^*a{a,b}^n$

 DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.
 {a, b}* CONCAT a{a, b}^n
 {a, b}*a. Has 5-rule CFG: a{a, b}ⁿ. A O(log n) rule CFG.

ション ふゆ アメリア メリア しょうくしゃ

 ${a,b}^*a{a,b}^n$

 DFA: exactly 2ⁿ⁺¹ size DFA. NFA: exactly n + 2 states.
 CFG: We obtain O(log n) size.
 {a, b}* CONCAT a{a, b}ⁿ
 {a, b}*a. Has 5-rule CFG: a{a, b}*a. A O(log n) rule CFG.
 {a, b}* CONCAT a{a, b}ⁿ has O(log n) rule CFG.

ション ふゆ アメリア メリア しょうくしゃ

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^m b^n : m > n\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow AT$ 2) $T \rightarrow aTb$ 3) $T \rightarrow e$ 4) $A \rightarrow Aa$ 5) $A \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^m b^n : m > n\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow AT$ 2) $T \rightarrow aTb$ 3) $T \rightarrow e$ 4) $A \rightarrow Aa$ 5) $A \rightarrow a$ Use nonterminals [aT], [b], [a]. Replace $T \rightarrow aTb$ with: $T \rightarrow [aT][b]$ $[aT] \rightarrow [a]T$ $[b] \rightarrow b$. $[a] \rightarrow a$

Any CFG can be Put Into Chomsky Normal Form

Recall the CFG for $\{a^m b^n : m > n\}$. We put it into Chomsky Normal Form.

1) $S \rightarrow AT$ 2) $T \rightarrow aTb$ 3) $T \rightarrow e$ 4) $A \rightarrow Aa$ 5) $A \rightarrow a$ Use nonterminals [aT], [b], [a]. Replace $T \rightarrow aTb$ with: $T \rightarrow [aT][b]$ $[aT] \rightarrow [a]T$ $[b] \rightarrow b.$ $[a] \rightarrow a$ Repeat the process with the other rules.

1) If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

MISC

 If L₁ is a CFL and L₂ is regular then L₁ ∩ L₂ is a CFL.
 Recall: DFA's are **Recognizers**, Regex are **Generators**.
 CFG's are **Generators**. There is a **Recognizer** equivalent to it: PDA: Push Down Automata

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

They are NFAs with a stack.

MISC

 If L₁ is a CFL and L₂ is regular then L₁ ∩ L₂ is a CFL.
 Recall: DFA's are **Recognizers**, Regex are **Generators**.
 CFG's are **Generators**. There is a **Recognizer** equivalent to it: PDA: Push Down Automata

They are NFAs with a stack.

The proof that PDA-recognizers and CFG-generators are equivalent is messy so we won't be doing it. We won't deal with PDA's in this course at all.

CNF for $\{w\}$

Example CNF for {*aabbbab*}

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$ [*ABBBAB*] $\rightarrow [A][BBBAB]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$ [ABBBAB] $\rightarrow [A][BBBAB]$ [BBBAB] $\rightarrow [B][BBAB]$

```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
```

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @
```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
[BAB] \rightarrow [B][AB]
```

```
Example CNF for {aabbbab}

S \rightarrow [A][ABBBAB]

[ABBBAB] \rightarrow [A][BBBAB]

[BBBAB] \rightarrow [B][BBAB]

[BBAB] \rightarrow [B][BAB]

[BAB] \rightarrow [B][AB]

[AB] \rightarrow [A][B]
```

```
Example CNF for {aabbbab}

S \rightarrow [A][ABBBAB]

[ABBBAB] \rightarrow [A][BBBAB]

[BBBAB] \rightarrow [B][BBAB]

[BBAB] \rightarrow [B][BAB]

[BAB] \rightarrow [B][AB]

[AB] \rightarrow [A][B]

[A] \rightarrow a
```

```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
[BAB] \rightarrow [B][AB]
[AB] \rightarrow [A][B]
[A] \rightarrow a
[B] \rightarrow b
```

・ロト・日本・モート ヨー うくぐ

1. You can do something similar for any w.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 1. You can do something similar for any w.
- 2. If |w| = n then the CFG will be O(n) rules.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. You can do something similar for any w.
- 2. If |w| = n then the CFG will be O(n) rules.

Question we will come back to LATER:
 (∃w) such that {w} requires large CFG?

$\textbf{CFL} \subset \textbf{P}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Let *L* be a CFL. Let *G* be the Chomsky Normal Form CFG for *L*. $w = \sigma_1 \cdots \sigma_n$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$. For $i \leq j$ let

$$\operatorname{GEN}[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let L be a CFL. Let G be the Chomsky Normal Form CFG for L. $w = \sigma_1 \cdots \sigma_n$. We want to know if $w \in L$. We assume $w \neq e$. For $i \leq j$ let

$$\operatorname{GEN}[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We will find all GEN[i, j]. Hence we will find GEN[1, n]. Hence we will find if $S \in GEN[1, n]$.

< ロ > < 団 > < 注 > < 注 > < 注 > のへで

 $\sigma_1 \cdots \sigma_{i-1} \stackrel{A}{\overbrace{\sigma_i}} \sigma_{i+1} \cdots \sigma_n$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\sigma_1 \cdots \sigma_{i-1} \overbrace{\sigma_i}^{A} \sigma_{i+1} \cdots \sigma_n$$

GEN[*i*, *i*] = {A : A $\rightarrow \sigma_i$ }

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\sigma_1 \cdots \sigma_{i-1} \overbrace{\sigma_i}^{A} \sigma_{i+1} \cdots \sigma_n$$

GEN[*i*, *i*] = {A : A \rightarrow \sigma_i}

 $\operatorname{GEN}[i, i+1] = \{A : A \to BC \land B \to \sigma_i \land C \to \sigma_{i+1}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\sigma_1 \cdots \sigma_{i-1} \overbrace{\sigma_i}^A \sigma_{i+1} \cdots \sigma_n$$

GEN[*i*, *i*] = {A : A \rightarrow \sigma_i}

$$\sigma_1 \cdots \sigma_{i-1} \stackrel{B}{\overbrace{\sigma_i}} \stackrel{C}{\overbrace{\sigma_{i+1}}} \sigma_{i+2} \cdots \sigma_n$$

$$\begin{aligned} \operatorname{GEN}[i, i+1] &= \{A : A \to BC \land B \to \sigma_i \land C \to \sigma_{i+1}\} \\ &= \{A : A \to BC \\ \land B \in \operatorname{GEN}[i, i] \land C \in \operatorname{GEN}[i+1, i+1]\} \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

$$\operatorname{GEN}[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

<ロト (個) (目) (目) (日) (の)</p>

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

$$GEN[i, j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$
$$\sigma_1 \cdots \sigma_{i-1} \overbrace{\sigma_i \sigma_{i+1} \cdots \sigma_k}^{B} \overbrace{\sigma_{k+1} \sigma_{k+2} \cdots \sigma_j}^{C} \sigma_{j+1} \cdots \sigma_n$$

 $\operatorname{GEN}[i,j] = \bigcup_{i \leq k < j} \{A : A \to BC \land B \Rightarrow \sigma_i \cdots \sigma_k \land C \Rightarrow \sigma_{k+1} \cdots \sigma_j \}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$GEN[i,j] = \{A : A \Rightarrow \sigma_i \cdots \sigma_j\}$$

$$\sigma_1 \cdots \sigma_{i-1} \overbrace{\sigma_i \sigma_{i+1} \cdots \sigma_k}^B \overbrace{\sigma_{k+1} \sigma_{k+2} \cdots \sigma_j}^C \sigma_{j+1} \cdots \sigma_n$$

$$\begin{split} \operatorname{GEN}[i,j] &= \bigcup_{i \le k < j} \{ A : A \to BC \land B \Rightarrow \sigma_i \cdots \sigma_k \land C \Rightarrow \sigma_{k+1} \cdots \sigma_j \} \\ &= \bigcup_{i \le k < j} \{ A : A \to BC \land B \in \operatorname{GEN}[i,k] \land C \in \operatorname{GEN}[k+1,j] \} \end{split}$$

<ロト (個) (目) (目) (日) (の)</p>

The Algorithm

```
for i = 1 to n do
     for j = i to n do
          GEN[i,j] \leftarrow \emptyset
for i = 1 to n do
     for all rules A \rightarrow \sigma_i do
          GEN[i,i] \leftarrow GEN[i,i] with A
for s = 2 to n do
     for i = 1 to n-s+1 do
          j \leftarrow i+s-1 do
          for k = i to j-1 do
               for all rules A \rightarrow BC
                    where B \in GEN[i,k] and C \in GEN[k+1,j]
                         GEN[i,j] \leftarrow GEN[i,j] with A
```