Review for CMSC 452 Midterm: P and NP

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We want to prove that

We want to prove that

1. Some languages *L* have a fast program to decide them

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We want to prove that

1. Some languages *L* have a fast program to decide them

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. (Spoiler Alert: $L \in P$.)

We want to prove that

- 1. Some languages *L* have a fast program to decide them
- 2. (Spoiler Alert: $L \in P$.)
- 3. Some languages *L* unlikely to have a fast program to decide them

We want to prove that

- 1. Some languages *L* have a fast program to decide them
- 2. (Spoiler Alert: $L \in P$.)
- 3. Some languages *L* unlikely to have a fast program to decide them

4. (Spoiler Alert: *L* is NP-complete.)

We want to prove that

- 1. Some languages *L* have a fast program to decide them
- 2. (Spoiler Alert: $L \in P$.)
- 3. Some languages *L* unlikely to have a fast program to decide them

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

4. (Spoiler Alert: *L* is NP-complete.)

We first look at some problems of interest.

How hard are the following problems:

How hard are the following problems:

1. **SAT** and its variants.

How hard are the following problems:

- 1. **SAT** and its variants.
- 2. **HAM** Given a graph *G* does it have a Ham Cycle? (A cycle that has every vertex exactly once.)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

How hard are the following problems:

- 1. **SAT** and its variants.
- 2. **HAM** Given a graph *G* does it have a Ham Cycle? (A cycle that has every vertex exactly once.)
- 3. **EUL** Given a graph *G* does it have a Euler Cycle? (A cycle that has every edge exactly once.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

How hard are the following problems:

- 1. **SAT** and its variants.
- 2. **HAM** Given a graph *G* does it have a Ham Cycle? (A cycle that has every vertex exactly once.)
- 3. **EUL** Given a graph *G* does it have a Euler Cycle? (A cycle that has every edge exactly once.)
- 4. **CLIQ** Given G and k, is there a set of k vertices that all know each other?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

How hard are the following problems:

- 1. **SAT** and its variants.
- 2. **HAM** Given a graph *G* does it have a Ham Cycle? (A cycle that has every vertex exactly once.)
- 3. **EUL** Given a graph *G* does it have a Euler Cycle? (A cycle that has every edge exactly once.)
- 4. **CLIQ** Given G and k, is there a set of k vertices that all know each other?

To even ask these questions we need (1) a standard way to describe sets and a (2) model of computation.

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are represented by binary strings.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are represented by binary strings.

The time it takes to determine if $x \in A$ is a function of |x|, the length of x.

Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are represented by binary strings.

The time it takes to determine if $x \in A$ is a function of |x|, the length of x.

We Sometimes Cheat We may take the length of a formula to be the number of vars. We may take the length of a graph to be the number of vertices. These notions of length are poly-related to the actual length and hence is fine for our purposes.

ション ふゆ アメビア メロア しょうくしゃ

We will **not** define *Turing Machine* until we need to (after midterm).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Here is all you need to know:

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

- 1. Everything computable is computable by a Turing machine.
- 2. Turing machines compute with discrete steps so one can talk about how many steps a computation takes.

We will **not** define *Turing Machine* until we need to (after midterm).

Here is all you need to know:

- 1. Everything computable is computable by a Turing machine.
- 2. Turing machines compute with discrete steps so one can talk about how many steps a computation takes.
- 3. There are many different models of computation. They are all equivalent to Turing machines. And better- they are all equivalent within poly time.

Def

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def 1. $P = DTIME(n^{O(1)}).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Def

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).

Def

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).
- 3. PF is the set of a **functions** computable in poly time.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def

- 1. $P = DTIME(n^{O(1)}).$
- 2. EXP = DTIME($2^{n^{O(1)}}$).
- 3. PF is the set of a **functions** computable in poly time.

These definitions are model independent.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We rewrite 3SAT, HAM, EUL.

We rewrite 3SAT, HAM, EUL.

$$3\text{SAT} = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

 $HAM = \{G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is a Ham Cycle}]\}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$\mathrm{HAM} = \{ G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is a Ham Cycle}] \}.$$

$$EUL = \{G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is an Eul Cycle}]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$HAM = \{G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is a Ham Cycle}]\}.$$

$$EUL = \{G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is an Eul Cycle}]\}.$$

 $CLIQ = \{ (G, k) : (\exists v_1, \ldots, v_k) [v_1, \ldots, v_k \text{ are a Clique}] \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We rewrite 3SAT, HAM, EUL.

$$3SAT = \{\phi : (\exists \vec{b})[\phi(\vec{b}) = T]\}$$

$$HAM = \{ G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is a Ham Cycle}] \}.$$

$$EUL = \{G : (\exists v_1, \ldots, v_n) [v_1, \ldots, v_n \text{ is an Eul Cycle}]\}.$$

$$CLIQ = \{ (G, k) : (\exists v_1, \ldots, v_k) [v_1, \ldots, v_k \text{ are a Clique}] \}.$$

For the above sets: If x is a member then there is a short verifiable witness of this.

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Intuition. Let $A \in NP$.

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

- If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that x ∈ A, I could give you y. You can verify (x, y) ∈ B easily and be convinced.

$$A = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}.$$

Intuition. Let $A \in NP$.

- If x ∈ A then there is a SHORT (poly in |x|) proof of this fact, namely y, such that x can be VERIFIED in poly time.
- So if I wanted to convince you that x ∈ A, I could give you y. You can verify (x, y) ∈ B easily and be convinced.

▶ If $x \notin A$ then there is NO proof that $x \in A$.

Note 3SAT, HAM, EUL, CLIQ are all in NP.

Our Plan for NP

3SAT, HAM, EUL, CLIQ are all in NP.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

3SAT, HAM, EUL, CLIQ are all in NP. So is

IS = {
$$(G, k)$$
 : G has an Ind Set of size k }.

(ロト (個) (E) (E) (E) (E) のへの

We (the slides from Stanford) gave an algorithm that does the following:

(ロト (個) (E) (E) (E) (E) のへの

We (the slides from Stanford) gave an algorithm that does the following:

1. Input ϕ , a formula in 3-CNF form.

We (the slides from Stanford) gave an algorithm that does the following:

- 1. Input ϕ , a formula in 3-CNF form.
- 2. **Output** (G, k) such that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

We (the slides from Stanford) gave an algorithm that does the following:

- 1. Input ϕ , a formula in 3-CNF form.
- 2. **Output** (G, k) such that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

3. The algorithm runs in time $p(|\phi|)$ (p is a poly).

We (the slides from Stanford) gave an algorithm that does the following:

- 1. Input ϕ , a formula in 3-CNF form.
- 2. **Output** (G, k) such that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

- 3. The algorithm runs in time $p(|\phi|)$ (p is a poly).
- 4. Produces (G, k) where $|(G, k)| \le q(|\phi|)$ (q is a poly).

We (the slides from Stanford) gave an algorithm that does the following:

- 1. Input ϕ , a formula in 3-CNF form.
- 2. **Output** (G, k) such that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

- 3. The algorithm runs in time $p(|\phi|)$ (p is a poly).
- 4. Produces (G, k) where $|(G, k)| \le q(|\phi|)$ (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that $IS \in P$ implies $3SAT \in P$.

Assume IS \in P via program *M* which runs in r(|(G, k)|).

Assume IS \in P via program M which runs in r(|(G, k)|).

1. Input ϕ , a formula in 3-CNF form of length L.

Assume IS \in P via program *M* which runs in r(|(G, k)|).

- 1. Input ϕ , a formula in 3-CNF form of length L.
- 2. Compute ALG on ϕ to get (G, k). Takes time $p(|\phi|)$ and produces (G, k) where $|(G, k)| \le q(|\phi|)$.

Assume IS \in P via program *M* which runs in r(|(G, k)|).

- 1. Input ϕ , a formula in 3-CNF form of length L.
- 2. Compute ALG on ϕ to get (G, k). Takes time $p(|\phi|)$ and produces (G, k) where $|(G, k)| \le q(|\phi|)$.
- 3. Run *M* on (G, k) (takes time $r(q(|\phi|))$). Recall that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

Assume IS \in P via program *M* which runs in r(|(G, k)|).

- 1. Input ϕ , a formula in 3-CNF form of length L.
- 2. Compute **ALG** on ϕ to get (G, k). Takes time $p(|\phi|)$ and produces (G, k) where $|(G, k)| \le q(|\phi|)$.
- 3. Run *M* on (G, k) (takes time $r(q(|\phi|))$). Recall that

 $\phi \in 3$ SAT iff $(G, k) \in$ IS.

So just output the output of M(G, k).

Assume IS \in P via program *M* which runs in r(|(G, k)|).

- 1. Input ϕ , a formula in 3-CNF form of length L.
- 2. Compute **ALG** on ϕ to get (G, k). Takes time $p(|\phi|)$ and produces (G, k) where $|(G, k)| \le q(|\phi|)$.
- 3. Run *M* on (G, k) (takes time $r(q(|\phi|))$). Recall that

 $\phi \in 3$ SAT iff $(G, k) \in I$ S.

So just output the output of M(G, k). This is an algorithm for 3SAT that takes time

 $p(|\phi|) + r(q(|\phi|))$

By the Cook-Levin Theorem Have the Converse

From the above we have $IS \in P$ implies $3SAT \in P$.

By the Cook-Levin Theorem Have the Converse

From the above we have

 $IS \in P$ implies $3SAT \in P$.

By the Cook-Levin theorem (after the midterm) we will have $3SAT \in P$ implies $IS \in P.$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

By the Cook-Levin Theorem Have the Converse

From the above we have

 $IS \in P$ implies $3SAT \in P$.

By the Cook-Levin theorem (after the midterm) we will have $3SAT \in P$ implies $IS \in P.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Hence we will have $3SAT \in P$ iff $IS \in P$.

From the above we have

 $IS \in P$ implies $3SAT \in P$.

By the Cook-Levin theorem (after the midterm) we will have $3SAT \in P$ implies $IS \in P.$

Hence we will have $3SAT \in P$ iff $IS \in P$.

Much More is Known The following are all in P or all NOT in P: HAM, 3SAT, IS, 3COL, CLIQ.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We now generalize what we did for 3SAT and IS.

We now generalize what we did for 3SAT and IS. **Def** Let X, Y be sets. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

We now generalize what we did for 3SAT and IS. **Def** Let X, Y be sets. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

ション ふゆ アメビア メロア しょうくしゃ

(Example: Our function that took ϕ to (G, k).)

We now generalize what we did for 3SAT and IS. **Def** Let X, Y be sets. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

ション ふゆ アメビア メロア しょうくしゃ

(Example: Our function that took ϕ to (G, k).) We express this by writing $X \leq Y$.

We now generalize what we did for 3SAT and IS. **Def** Let X, Y be sets. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

(Example: Our function that took ϕ to (G, k).) We express this by writing $X \leq Y$.

Reductions are transitive. Lemma (HW) If $X \le Y$ and $Y \in P$ then $X \in P$. (We use that if f(n), g(n) are poly then f(g(n)) is poly.)

ション ふぼう メリン メリン しょうくしゃ

We now generalize what we did for 3SAT and IS. **Def** Let X, Y be sets. A **reduction** from X to Y is a polynomial-time computable function f such that

 $x \in X$ iff $f(x) \in Y$.

(Example: Our function that took ϕ to (G, k).) We express this by writing $X \leq Y$.

Reductions are transitive. Lemma (HW) If $X \le Y$ and $Y \in P$ then $X \in P$. (We use that if f(n), g(n) are poly then f(g(n)) is poly.) Contrapositive If $X \le Y$ and $X \notin P$ then $Y \notin P$.

Def of NP-Complete

Def A set Y is **NP-complete** (**NPC**) if the following hold:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- ▶ $Y \in NP$
- ▶ If $X \in NP$ then $X \leq Y$.

Def A set Y is **NP-complete** (**NPC**) if the following hold:

- ► $Y \in NP$
- If $X \in NP$ then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Def A set Y is **NP-complete** (**NPC**) if the following hold:

- ► $Y \in NP$
- If $X \in NP$ then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP. **Cook-Levin Theorem** 3SAT is NP-complete.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Def A set Y is **NP-complete** (**NPC**) if the following hold:

- ► $Y \in NP$
- If $X \in NP$ then $X \leq Y$.

Easy Lemma If Y is NP-complete and $Y \in P$ then P = NP.

Cook-Levin Theorem 3SAT is NP-complete.

Since then thousands of problems have been shown NP-complete.

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

1. SAT is NP-complete by Cook-Levin Theorem.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.

ション ふゆ アメビア メロア しょうくしゃ

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3. 3COL is NP-complete. We proved this.

- 1. SAT is NP-complete by Cook-Levin Theorem.
- 2. IS is NP-complete. We proved this by showing $3SAT \leq IS$.

ション ふゆ アメビア メロア しょうくしゃ

- 3. 3COL is NP-complete. We proved this.
- 4. HAM is NP-complete. Just take my word for it.