Review for CMSC 452 Midterm

Deterministic Finite Automata (DFA)

DFA Diagram

DFA Diagram

DFA Diagram

What is the language?

DFA Diagram

What is the language?
Odd number of a 's followed by an even number of b 's, but at least two.
$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \#_{b}(w) \equiv 2(\bmod 3)\right\}$

$\left\{w: \#_{a}(w) \equiv 1(\bmod 2) \wedge \# b(w) \equiv 2(\bmod 3)\right\}$

Transition Table

Transition Table

Transition Table

Transition Table:

Transition Table

Transition Table:

- States: $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$

Transition Table

Transition Table:

- States: $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
- Alphabet: $\{a, b\}$

Transition Table

Transition Table:

- States: $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
- Alphabet: $\{a, b\}$
- Start state: q_{1}

Transition Table

Transition Table:

- States: $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
- Alphabet: $\{a, b\}$
- Start state: q_{1}
- Final states: $\left\{q_{2}, q_{4}\right\}$

Transition Table

Transition Table:

- States: $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$
- Alphabet: $\{a, b\}$
- Start state: q_{1}
- Final states: $\left\{q_{2}, q_{4}\right\}$
- Transition function

	a	b
q_{1}	q_{2}	q_{5}
q_{2}	q_{1}	q_{3}
q_{3}	q_{5}	q_{4}
q_{4}	q_{5}	q_{3}
q_{5}	q_{5}	q_{5}

Divisibility

Divisibility

We get a DFA (a trick?) for Mod 11.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11?

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots \pm d_{n}$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots \pm d_{n}$.
Proof may be on HW or Midterm or Final or some combination.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.
22 states.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.
22 states.
Classifier If end in $(i, 0)$ or $(i, 1)$ then number is $\equiv i$.

Nondeterministic Finite Automata (NFA)

NFA's Intuitively

1. An NFA is a DFA that can guess.
2. NFAs do not really exist.
3. Good for U since can guess which one.
4. An NFA accepts iff SOME guess accepts.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. Pf Sketch L is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where

1. Get rid of e-transitions using reachability.
2. Get rid of non-determinism by using power sets. Possibly 2^{n} blowup.

Regular Expressions

Examples

1. $b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}$
2. $b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}$
3. $\left(b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}\right) \cup\left(b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}\right)$

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Every Regex-Lang is an NFA-Lang

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

We skip rest of the proof.

$\mathrm{DFA} \subseteq$ REGEX

Given a DFA M we want a Regex for $L(M)$.

$\mathrm{DFA} \subseteq$ REGEX

Given a DFA M we want a Regex for $L(M)$.
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.
Will assume M has state set $\{1, \ldots, n\}$.

DFA \subseteq REGEX

Given a DFA M we want a Regex for $L(M)$.
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.
Will assume M has state set $\{1, \ldots, n\}$.
$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.

Inductive Step $R(i, j, k)$ as a Picture

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.
For all $1 \leq i, j \leq n$ and all $0 \leq k \leq n$

$$
R(i, j, k)=R(i, j, k-1) \bigcup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)
$$

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.
For all $1 \leq i, j \leq n$ and all $0 \leq k \leq n$

$$
R(i, j, k)=R(i, j, k-1) \bigcup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)
$$

If $\operatorname{ALL} R(i, j, k-1)$ are Regex, then $\operatorname{ALL} R(i, j, k)$ are Regex.

Textbook Regular Expressions

We allow numbers as exponents. For example the following is not a regex but is a trex:

$$
\{a, b\}^{*} a\{a, b\}^{n}
$$

Textbook Regular Expressions

We allow numbers as exponents. For example the following is not a regex but is a trex:

$$
\{a, b\}^{*} a\{a, b\}^{n}
$$

Often the trex is shorter than the regex.

Closure Properties

[^0]
Summary of Proofs of Closure Properties

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cap L_{2}$ for regex.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cap L_{2}$ for regex.
Swap means swapping final and non-final states.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cap L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdots I_{2}$ for NFAs.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cap L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdots l_{2}$ for NFAs.
\mathbf{X} means hard to prove, e.g., \bar{L} for NFA.

Summary of Proofs of Closure Properties

Prod means product construction where you use $Q_{1} \times Q_{2}$
Def means by Definition, e.g., $L_{1} \cap L_{2}$ for regex.
Swap means swapping final and non-final states.
e-trans means by using e-transitions, e.g., $L_{1} \cdots l_{2}$ for NFAs.
X means hard to prove, e.g., \bar{L} for NFA.

Property	DFA	NFA	regex
$L_{1} \cup L_{2}$	Prod	e-trans	Def
$L_{1} \cap L_{2}$	Prod	Prod	X
\bar{L}	Swap	X	X
$L_{1} \cdot L_{2}$	X	e-trans	Def
L^{*}	X	e-trans	Def

Summary of Blowup for Closure Properties

X means Can't Prove Easily

Summary of Blowup for Closure Properties

X means Can't Prove Easily
n_{1}, n_{2} are number of states in a DFA or NFA.

Summary of Blowup for Closure Properties

X means Can't Prove Easily
n_{1}, n_{2} are number of states in a DFA or NFA.
ℓ, ℓ_{2} are length of regex.

Summary of Blowup for Closure Properties

X means Can't Prove Easily

n_{1}, n_{2} are number of states in a DFA or NFA.
ℓ, ℓ_{2} are length of regex.

Closure Property	DFA	NFA	Regex
$L_{1} \cup L_{2}$	$n_{1} n_{2}$	$n_{1}+n_{2}$	$\ell_{1}+\ell_{2}$
$L_{1} \cap L_{2}$	$n_{1} n_{2}$	$n_{1} n_{2}$	X
$L_{1} \cdot L_{2}$	X	$n_{1}+n_{2}+1$	$\ell_{1}+\ell_{2}$
\bar{L}	n	X	X
L^{*}	X	$n+1$	$\ell+1$

Number of States for DFAs and NFAs

Minimal DFA for $L_{1}=\left\{a^{i}: i \equiv 0(\bmod 35)\right\}$

Min DFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

Min DFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

\exists DFA for $L_{2}: 35$ states: swap final-final states in DFA for L_{1}.

Small NFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

Need these two NFA's.

Small NFA for $L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

DFA for L_{2} requires 35 states.

$L_{2}=\left\{a^{i}: i \not \equiv 0(\bmod 35)\right\}$

DFA for L_{2} requires 35 states.
NFA for L_{2} can be done with $1+5+7=13$ states.

DFA for $L_{4}=\left\{a^{i}: i \neq 1000\right\}$

DFA for $L_{4}=\left\{a^{i}: i \neq 1000\right\}$

1. There is a DFA for L_{4} that has 1000 states.
2. Any DFA for L_{3} has ≥ 1000 states.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

NFA B:

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

NFA B:

- Does NOT accept a^{1000}.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

NFA B:

- Does NOT accept a^{1000}.
- Accepts all words shorter than 1000.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

NFA B:

- Does NOT accept a^{1000}.
- Accepts all words shorter than 1000.
- Do not care about words longer than 1000.

Small NFA for $L_{4}=\left\{a^{n}: n \neq 1000\right\}$

Two NFA's:
NFA A:

- Does NOT accept a^{1000}.
- Accepts all words longer than 1000.
- Do not care about words shorter than 1000.

NFA B:

- Does NOT accept a^{1000}.
- Accepts all words shorter than 1000.
- Do not care about words longer than 1000.

Create the union of NFA's A and B.

Sums of 32's and 33's

Thm

1) $(\forall n \geq 1001)(\exists x, y \in \mathbb{N})[n=32 x+33 y+9]$.

Sums of 32's and 33's

Thm

1) $(\forall n \geq 1001)(\exists x, y \in \mathbb{N})[n=32 x+33 y+9]$.
2) $(\neg \exists x, y \in \mathbb{N})[1000=32 x+33 y+9]$.

NFA A

Idea Start state, then 8 states, then a loop of size 33 with a shortcut at 32 .

NFA A

Idea Start state, then 8 states, then a loop of size 33 with a shortcut at 32.

Why Works for $\left\{a^{i}: i \geq 1001\right\}$ and More

By the loop Theorem for 32, 33, the NFA

1. Accepts $\left\{\boldsymbol{a}^{\boldsymbol{i}}: \mathbf{i} \geq \mathbf{1 0 0 1}\right\}$.
2. Might accept more.
3. DOES NOT accept a^{1000}.

Number of States for $\left\{a^{i}: i \geq 1001\right\}$

1. Start state

Number of States for $\left\{a^{i}: i \geq 1001\right\}$

1. Start state
2. A chain of 9 states including the start state.

Number of States for $\left\{a^{i}: i \geq 1001\right\}$

1. Start state
2. A chain of 9 states including the start state.
3. A loop of 33 states. The shortcut on 32 does not affect the number of states.

Number of States for $\left\{a^{i}: i \geq 1001\right\}$

1. Start state
2. A chain of 9 states including the start state.
3. A loop of 33 states. The shortcut on 32 does not affect the number of states.
Total number of states: $9+33=42$.

Still Need NFA B

Still Need NFA B

Idea

Still Need NFA B

Idea
$1000 \equiv 0(\bmod 2) 2$-state DFA for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$.

Still Need NFA B

Idea

$$
\begin{aligned}
& 1000 \equiv 0(\bmod 2) \text { 2-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\} \\
& 1000 \equiv 1(\bmod 3) \text { 3-state DFA for }\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\} .
\end{aligned}
$$

Still Need NFA B

Idea
$1000 \equiv 0(\bmod 2) 2$-state DFA for $\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\}$.
$1000 \equiv 1(\bmod 3)$ 3-state DFA for $\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\}$.
$1000 \equiv 0(\bmod 5) 5$-state DFA for $\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\}$.

Still Need NFA B

Idea

$$
\begin{aligned}
& 1000 \equiv 0(\bmod 2) \text { 2-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\} \\
& 1000 \equiv 1(\bmod 3) \text { 3-state DFA for }\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\} \\
& 1000 \equiv 0(\bmod 5) \text { 5-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\} . \\
& 1000 \equiv 6(\bmod 7) 7 \text {-state DFA for }\left\{a^{i}: i \not \equiv 6(\bmod 7)\right\} .
\end{aligned}
$$

Still Need NFA B

Idea

$$
\begin{aligned}
& 1000 \equiv 0(\bmod 2) 2 \text {-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\} \\
& 1000 \equiv 1(\bmod 3) 3 \text {-state DFA for }\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\} \\
& 1000 \equiv 0(\bmod 5) 5 \text {-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\} \\
& 1000 \equiv 6(\bmod 7) 7 \text {-state DFA for }\left\{a^{i}: i \not \equiv 6(\bmod 7)\right\} \\
& 1000 \equiv 10(\bmod 11) 11 \text {-state DFA for }\left\{a^{i}: i \not \equiv 10(\bmod 11)\right\} .
\end{aligned}
$$

Still Need NFA B

Idea

$$
\begin{aligned}
& 1000 \equiv 0(\bmod 2) 2 \text {-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 2)\right\} \\
& 1000 \equiv 1(\bmod 3) 3 \text {-state DFA for }\left\{a^{i}: i \not \equiv 1(\bmod 3)\right\} \\
& 1000 \equiv 0(\bmod 5) 5 \text {-state DFA for }\left\{a^{i}: i \not \equiv 0(\bmod 5)\right\} \\
& 1000 \equiv 6(\bmod 7) 7 \text {-state DFA for }\left\{a^{i}: i \not \equiv 6(\bmod 7)\right\} . \\
& 1000 \equiv 10(\bmod 11) 11 \text {-state DFA for }\left\{a^{i}: i \not \equiv 10(\bmod 11)\right\} . \\
& \text { Could go on to } 13,17, \text { etc. But we will see we can stop here. }
\end{aligned}
$$

Machine B

[^1]
Machine B

NFA for $\left\{a^{i}: i \leq 999\right\}$ AND More, but NOT a^{1000}

Thm Let M be the NFA from the last slide with the Mods. $M\left(a^{1000}\right)$ is rejected. This is obvious.

NFA for $\left\{a^{i}: i \leq 999\right\}$ AND More, but NOT a^{1000}

Thm Let M be the NFA from the last slide with the Mods. $M\left(a^{1000}\right)$ is rejected. This is obvious.
We omit the proof that it works but note that we use that the product of the mods

$$
2 \times 3 \times 5 \times 7 \times 11=2310>1000
$$

How Many States for $\left\{a^{i}: i \leq 999\right\}$ AND More, but NOT a^{1000} ?
$2+3+5+7+11=28$ states.
Plus the start state, so 29 .

NFA for $\left\{a^{i}: i \neq 1000\right\}$

NFA for $\left\{a^{i}: i \neq 1000\right\}$

1. We have an NFA on 42 states that accepts $\left\{a^{i}: i \geq 1001\right\}$ This includes the start state.

NFA for $\left\{a^{i}: i \neq 1000\right\}$

1. We have an NFA on 42 states that accepts $\left\{a^{i}: i \geq 1001\right\}$ This includes the start state.
2. We have an NFA on 29 states that accepts $\left\{a^{i}: i \leq 999\right\}$ and other stuff, but NOT a^{1000}. This includes the start state.

NFA for $\left\{a^{i}: i \neq 1000\right\}$

1. We have an NFA on 42 states that accepts $\left\{a^{i}: i \geq 1001\right\}$ This includes the start state.
2. We have an NFA on 29 states that accepts $\left\{a^{i}: i \leq 999\right\}$ and other stuff, but NOT a^{1000}. This includes the start state.
Take NFA of union using e-transitions for an NFA and do not count start state twice, so have

$$
42+29-1=70 \text { states. }
$$

Can We Do Better than 70 States?

YES-59 states:

Figure: 59 State NFA for L_{4}

Math Needed for $\left\{a^{i}: i \neq n\right\}$ I

Frobenius Thm (aka The Chicken McNugget Thm)

Math Needed for $\left\{a^{i}: i \neq n\right\}$ I

Frobenius Thm (aka The Chicken McNugget Thm)
Thm If x, y are relatively prime then

- For all $z \geq x y-x-y+1$ there exists $c, d \in \mathbb{N}$ such that $z=c x+d y$.
- There is no $c, d \in \mathbb{N}$ such that $x y-x-y=c x+d y$.

Math Needed for $\left\{a^{i}: i \neq n\right\}$ I

Frobenius Thm (aka The Chicken McNugget Thm)
Thm If x, y are relatively prime then

- For all $z \geq x y-x-y+1$ there exists $c, d \in \mathbb{N}$ such that $z=c x+d y$.
- There is no $c, d \in \mathbb{N}$ such that $x y-x-y=c x+d y$.

We use this to get an NFA for $\left\{a^{i}: i \geq n+1\right\}$ by using $x, y \approx \sqrt{n}$.

Math Needed for $\left\{a^{i}: i \neq n\right\}$ I

Frobenius Thm (aka The Chicken McNugget Thm)
Thm If x, y are relatively prime then

- For all $z \geq x y-x-y+1$ there exists $c, d \in \mathbb{N}$ such that $z=c x+d y$.
- There is no $c, d \in \mathbb{N}$ such that $x y-x-y=c x+d y$.

We use this to get an NFA for $\left\{a^{i}: i \geq n+1\right\}$ by using $x, y \approx \sqrt{n}$.
Want to get $x y-x-y \leq n$ so can use the tail to get $x y-x-y+t=n+1$.

Math Needed for $\left\{a^{i}: i \neq n\right\}$ I

Frobenius Thm (aka The Chicken McNugget Thm)
Thm If x, y are relatively prime then

- For all $z \geq x y-x-y+1$ there exists $c, d \in \mathbb{N}$ such that $z=c x+d y$.
- There is no $c, d \in \mathbb{N}$ such that $x y-x-y=c x+d y$.

We use this to get an NFA for $\left\{a^{i}: i \geq n+1\right\}$ by using $x, y \approx \sqrt{n}$.
Want to get $x y-x-y \leq n$ so can use the tail to get $x y-x-y+t=n+1$.
This leads to loops and tail that are roughly $\leq 2 \sqrt{n}$ states.

Math Needed for $\left\{a^{i}: i \neq n\right\}$ II

Thm Let $n \in \mathbb{N}$. Let q_{1}, \ldots, q_{k} be rel prime such that $\prod_{i=1}^{k} q_{i} \geq n$. Then the set of all i such that $i \not \equiv n\left(\bmod q_{1}\right)$.
$i \not \equiv n\left(\bmod q_{k}\right)$.
Contains $\{1, \ldots, n-1\}$ and does not contain n

Math Needed for $\left\{a^{i}: i \neq n\right\}$ II

Thm Let $n \in \mathbb{N}$. Let q_{1}, \ldots, q_{k} be rel prime such that
$\prod_{i=1}^{k} q_{i} \geq n$. Then the set of all i such that $i \not \equiv n\left(\bmod q_{1}\right)$.
$i \not \equiv n\left(\bmod q_{k}\right)$.
Contains $\{1, \ldots, n-1\}$ and does not contain n
Number theory tells us that can find such a q_{1}, \ldots, q_{k} with

$$
\sum_{i=1}^{k} q_{i} \leq(\log n)^{2} \log \log n
$$

Math Needed for $\left\{a^{i}: i \neq n\right\}$ II

Thm Let $n \in \mathbb{N}$. Let q_{1}, \ldots, q_{k} be rel prime such that
$\prod_{i=1}^{k} q_{i} \geq n$. Then the set of all i such that $i \not \equiv n\left(\bmod q_{1}\right)$.
$i \not \equiv n\left(\bmod q_{k}\right)$.
Contains $\{1, \ldots, n-1\}$ and does not contain n
Number theory tells us that can find such a q_{1}, \ldots, q_{k} with

$$
\sum_{i=1}^{k} q_{i} \leq(\log n)^{2} \log \log n
$$

So can use this to get NFA for $\left\{a^{i}: i \leq n-1\right\}$ (and other stuff but not $\left.a^{n}\right)$ with $\leq(\log n)^{2} \log \log n$ states.

Proving That a Language Is Not Regular

Pumping Lemma（PL）

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states. Run M on $a^{m} b^{m}$.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states. Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$a^{n+k} b^{n}$ is accepted by following the loop again. Contradiction.

General Technique

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$ (or can take $|y z| \leq n_{1}$ but not both.)
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

How We Use the PL

How We Use the PL

We restate it in the way that we use it.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

We then find some i such that $x y^{i} z \notin L$ for the contradiction.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular
Assume L_{1} is regular.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

Contradiction since $k \geq 1$.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.
So what do to?

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.
So what do to?
If L_{3} is regular then $L_{2}=\overline{L_{3}}$ is regular. But we know that L_{2} is not regular. DONE!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.
Proof

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$$
(\forall i \geq 0)\left[j+i k+\ell=n^{2}+i k \text { is a square }\right] .
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$$
(\forall i \geq 0)\left[j+i k+\ell=n^{2}+i k \text { is a square }\right] .
$$

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. Omit the rest.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }] .
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime. But $p+p k=p(k+1)$.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime. But $p+p k=p(k+1)$. Contradiction.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} s.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} 's.
Pump the y to get more b 's than a 's.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

We will be brief here.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

We will be brief here.
Use PL with bound on $|y z|$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.
But we can also take $i=0$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.
But we can also take $i=0$. Cut out that part of the word.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.
But we can also take $i=0$. Cut out that part of the word.

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.
But we can also take $i=0$. Cut out that part of the word.

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

Since $k \geq 1$, we have that $\#_{a}\left(x y^{0} z\right)<n \leq n-1=\#_{b}\left(x y^{0} z\right)$. Hence $x y^{0} z \notin L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Problematic Neither pumping on the left or on the right works. So choose string carefully.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8} . x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}$
Key We are used to thinking of i large.
But we can also take $i=0$. Cut out that part of the word.

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

Since $k \geq 1$, we have that $\#_{a}\left(x y^{0} z\right)<n \leq n-1=\#_{b}\left(x y^{0} z\right)$. Hence $x y^{0} z \notin L_{8}$. Contradiction.

$i=0$ Case as a Picture

[^0]:

[^1]:

