Misc Context Free Languages Stuff

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

The Three Theorems

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

The Three Theorems

 If L is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

The Three Theorems

- 1. If *L* is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.
- 2. If $w \in \Sigma^*$ and |w| = n then there is a CFL for w with O(n) rules.

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

The Three Theorems

- 1. If *L* is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.
- 2. If $w \in \Sigma^*$ and |w| = n then there is a CFL for w with O(n) rules.

ション ふぼう メリン メリン しょうくしゃ

3. Pumping Theorem for CFL.

Every CFL has a CFG in CNF

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目| のへの

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

(ロト (個) (E) (E) (E) (E) のへの

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form: 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals). 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Def CFG *G* is in **Chomsky Normal Form** if the rules are all of the following form:

- 1) $A \rightarrow BC$ where $A, B, C \in N$ (nonterminals).
- 2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
- 3) $S \rightarrow e$ (where S is the start state).

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

S
ightarrow aabaA

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

S
ightarrow aabaAA
ightarrow SBaa

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

- S
 ightarrow aabaA
- A
 ightarrow SBaa
- A
 ightarrow aaa

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- S
 ightarrow aabaA
- A
 ightarrow SBaa
- A
 ightarrow aaa
- $A \rightarrow B$

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- S
 ightarrow aabaA
- A
 ightarrow SBaa
- A
 ightarrow aaa
- $A \rightarrow B$
- B
 ightarrow BaB

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

- S
 ightarrow aabaA
- A
 ightarrow SBaa
- A
 ightarrow aaa
- $A \rightarrow B$
- B
 ightarrow BaB
- B
 ightarrow bAbB

Theorem If *L* is a CFL then there exists a CFL in CNF for *L*.

Example We take a CFL and show how to create a CFG in CNF for it.

- S
 ightarrow aabaA
- A
 ightarrow SBaa
- A
 ightarrow aaa
- $A \rightarrow B$
- B
 ightarrow BaB
- B
 ightarrow bAbB
- B
 ightarrow bAAb

S
ightarrow aabaA

Make it into the following rules with NEW nonterminals

 $S \rightarrow aabaA$ Make it into the following rules with NEW nonterminals [*abaA*], [*baA*], [*a*], [*a*]

(ロト (個) (E) (E) (E) (E) のへの

 $S \rightarrow aabaA$ Make it into the following rules with NEW nonterminals [*abaA*], [*baA*], [*a*], [*a*]

 $S \rightarrow [a][abaA]$

 $S \rightarrow aabaA$ Make it into the following rules with NEW nonterminals [*abaA*], [*baA*], [*a*], [*a*]

 $S \rightarrow [a][abaA]$ $[abaA] \rightarrow [a][baA]$

 $S \rightarrow aabaA$ Make it into the following rules with NEW nonterminals [*abaA*], [*baA*], [*a*], [*a*]

S
ightarrow [a][abaA][abaA]
ightarrow [a][baA][baA]
ightarrow [b][aA]

 $S \rightarrow aabaA$ Make it into the following rules with NEW nonterminals [*abaA*], [*baA*], [*a*], [*a*]

ション ふぼう メリン メリン しょうくしゃ

```
S 
ightarrow [a][abaA]
[abaA] 
ightarrow [a][baA]
[baA] 
ightarrow [b][aA]
[aA] 
ightarrow [a]A
```

```
S \rightarrow aabaA
Make it into the following rules with NEW nonterminals
[abaA], [baA], [a], [a]
```

ション ふぼう メリン メリン しょうくしゃ

```
S \rightarrow [a][abaA]
[abaA] \rightarrow [a][baA]
[baA] \rightarrow [b][aA]
[aA] \rightarrow [a]A
[a] \rightarrow a
```

```
S \rightarrow aabaA
Make it into the following rules with NEW nonterminals
[abaA], [baA], [a], [a]
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
S \rightarrow [a][abaA]
[abaA] \rightarrow [a][baA]
[baA] \rightarrow [b][aA]
[aA] \rightarrow [a]A
[a] \rightarrow a
[b] \rightarrow b
```

S
ightarrow aabaA

 $S \rightarrow aabaA$ Done

 $S \rightarrow aabaA$ **Done** $A \rightarrow SBaa$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A
ightarrow aaa
- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$

- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$

- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- B
 ightarrow BaB

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- $B \rightarrow BaB$ Can Use Same Method as on $S \rightarrow aabaA$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- $B \rightarrow BaB$ Can Use Same Method as on $S \rightarrow aabaA$

 $B \rightarrow bAbB$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- $B \rightarrow BaB$ Can Use Same Method as on $S \rightarrow aabaA$
- $B \rightarrow bAbB$ Can Use Same Method as on $S \rightarrow aabaA$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- $B \rightarrow BaB$ Can Use Same Method as on $S \rightarrow aabaA$
- $B \rightarrow bAbB$ Can Use Same Method as on $S \rightarrow aabaA$ $B \rightarrow bAAb$

- $S \rightarrow aabaA$ **Done**
- $A \rightarrow SBaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow aaa$ Can Use Same Method as on $S \rightarrow aabaA$
- $A \rightarrow B$ Oh! Need New Technique!
- $B \rightarrow BaB$ Can Use Same Method as on $S \rightarrow aabaA$
- $B \rightarrow bAbB$ Can Use Same Method as on $S \rightarrow aabaA$
- $B \rightarrow bAAb$ Can Use Same Method as on $S \rightarrow aabaA$

Discuss How to deal with $A \rightarrow B$?

(4日) (個) (主) (主) (三) の(の)

Discuss How to deal with $A \rightarrow B$? $A \rightarrow B$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Discuss How to deal with $A \rightarrow B$? $A \rightarrow B$ We will remove this!

Discuss How to deal with $A \rightarrow B$? $A \rightarrow B$ We will remove this!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

S
ightarrow aabaA

Discuss How to deal with $A \rightarrow B$? $A \rightarrow B$ We will remove this! $S \rightarrow aabaA$ Add $S \rightarrow aabaB$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Discuss How to deal with $A \rightarrow B$? $A \rightarrow B$ We will remove this! $S \rightarrow aabaA$ Add $S \rightarrow aabaB$ $A \rightarrow SBaa$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Discuss How to deal with $A \rightarrow B$?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed

Discuss How to deal with $A \rightarrow B$?

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- A
 ightarrow aaa

Discuss How to deal with $A \rightarrow B$?

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$

Discuss How to deal with $A \rightarrow B$?

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- B
 ightarrow BaB

- **Discuss** How to deal with $A \rightarrow B$?
- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- $B \rightarrow BaB$ No Add Needed

Discuss How to deal with $A \rightarrow B$?

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- $B \rightarrow BaB$ No Add Needed

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

B
ightarrow bAbB

Discuss How to deal with $A \rightarrow B$?

- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- $B \rightarrow BaB$ No Add Needed
- $B \rightarrow bAbB \text{ Add } B \rightarrow bBbB$

- **Discuss** How to deal with $A \rightarrow B$?
- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- $B \rightarrow BaB$ No Add Needed
- $B \rightarrow bAbB \text{ Add } B \rightarrow bBbB$

B
ightarrow bAAb

- **Discuss** How to deal with $A \rightarrow B$?
- $A \rightarrow B$ We will remove this!
- $S \rightarrow aabaA \text{ Add } S \rightarrow aabaB$
- $A \rightarrow SBaa$ No Add Needed
- $A \rightarrow aaa \text{ No Add Needed}$
- $B \rightarrow BaB$ No Add Needed
- $B \rightarrow bAbB \text{ Add } B \rightarrow bBbB$
- $B \rightarrow bAAb \text{ Add } B \rightarrow bBAb \mid bABb \mid bBBb$

Just Do that For Every Rule

<ロ> < 個> < 国> < 国> < 国> < 国</p>

Just Do that For Every Rule

1. For every rule of the form $S \to \alpha$ where $|\alpha| \ge 2$ do what I did for $S \to aabaA$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Just Do that For Every Rule

- 1. For every rule of the form $S \to \alpha$ where $|\alpha| \ge 2$ do what I did for $S \to aabaA$.
- 2. For every rule of the form $X \to Y$ do what I did for $A \to B$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

CNF for $\{w\}$

Example CNF for {*aabbbab*}

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$ [*ABBBAB*] $\rightarrow [A][BBBAB]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example CNF for {*aabbbab*} $S \rightarrow [A][ABBBAB]$ [ABBBAB] $\rightarrow [A][BBBAB]$ [BBBAB] $\rightarrow [B][BBAB]$

```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
```

```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
[BAB] \rightarrow [B][AB]
```

```
Example CNF for {aabbbab}

S \rightarrow [A][ABBBAB]

[ABBBAB] \rightarrow [A][BBBAB]

[BBBAB] \rightarrow [B][BBAB]

[BBAB] \rightarrow [B][BAB]

[BAB] \rightarrow [B][AB]

[AB] \rightarrow [A][B]
```

```
Example CNF for {aabbbab}

S \rightarrow [A][ABBBAB]

[ABBBAB] \rightarrow [A][BBBAB]

[BBBAB] \rightarrow [B][BBAB]

[BBAB] \rightarrow [B][BAB]

[BAB] \rightarrow [B][AB]

[AB] \rightarrow [A][B]

[A] \rightarrow a
```
CNF for {aabbbab}

```
Example CNF for {aabbbab}
S \rightarrow [A][ABBBAB]
[ABBBAB] \rightarrow [A][BBBAB]
[BBBAB] \rightarrow [B][BBAB]
[BBAB] \rightarrow [B][BAB]
[BAB] \rightarrow [B][AB]
[AB] \rightarrow [A][B]
[A] \rightarrow a
[B] \rightarrow b
```

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

CNF for $\{w\}$

・ロト・日本・モート ヨー うくぐ

CNF for $\{w\}$

1. You can do something similar for any w.

CNF for $\{w\}$

- 1. You can do something similar for any w.
- 2. If |w| = n then the CFG will be O(n) rules.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへぐ

1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

{aⁿ}: There is a CFG in CNF with O(log n) rules.
 {w}: |w| = n. There is a CFG in CNF with O(n) rules.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.

4. Can you find an actual string w such that

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.

ション ふゆ アメリア メリア しょうくしゃ

- 4. Can you find an actual string w such that
 - 4.1 There is a CFG in CNG form for $\{w\}$ of size $O(n^{1/2})$.

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.

ション ふゆ アメリア メリア しょうくしゃ

- 4. Can you find an actual string w such that
 - 4.1 There is a CFG in CNG form for $\{w\}$ of size $O(n^{1/2})$.
 - **4.2** Every CFG in CNG form for $\{w\}$ is of size $\Omega(n^{1/2})$.

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
- 4. Can you find an actual string w such that
 - 4.1 There is a CFG in CNG form for $\{w\}$ of size $O(n^{1/2})$.
 - 4.2 Every CFG in CNG form for $\{w\}$ is of size $\Omega(n^{1/2})$.
- 5. The same question for other functions between $\log n$ and n

ション ふゆ アメリア メリア しょうくしゃ

- 1. $\{a^n\}$: There is a CFG in CNF with $O(\log n)$ rules.
- 2. $\{w\}$: |w| = n. There is a CFG in CNF with O(n) rules.
- 3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
- 4. Can you find an actual string w such that
 - 4.1 There is a CFG in CNG form for $\{w\}$ of size $O(n^{1/2})$.
 - 4.2 Every CFG in CNG form for $\{w\}$ is of size $\Omega(n^{1/2})$.

5. The same question for other functions between $\log n$ and nWe will return to this question later in the course.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds: For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

1. w = uvxyz and either $v \neq e$ or $y \neq e$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \le n_1$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \leq n_1$.
- 3. For all $i \ge 0$, $uv^i xy^i z \in L$.

Pumping Lemma (PL) If *L* is a CFL then there exist n_0 and n_1 such that the following holds:

For all $w \in L$, $|w| \ge n_0$ there exist u, v, x, y, z such that:

- 1. w = uvxyz and either $v \neq e$ or $y \neq e$.
- 2. $|vxy| \leq n_1$.
- 3. For all $i \ge 0$, $uv^i xy^i z \in L$.

Proof involves looking at the Parse Tree for w and finding some nonterminal T twice in the tree. We will not be doing the proof.

One can show the following languages are not CFL using the PL.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

One can show the following languages are not CFL using the PL. 1. $\{a^n b^n c^n : n \in \mathbb{N}\}$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

One can show the following languages are not CFL using the PL.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. $\{a^n b^n c^n : n \in \mathbb{N}\}$
- 2. $\{w: \#_a(w) = \#_b(w) = \#_c(w)\}$

One can show the following languages are not CFL using the PL.

1. $\{a^n b^n c^n : n \in \mathbb{N}\}$ 2. $\{w : \#_a(w) = \#_b(w) = \#_c(w)\}$ 3. $\{a^{n^2} : n \in \mathbb{N}\}$

One can show the following languages are not CFL using the PL.

1.
$$\{a^n b^n c^n : n \in \mathbb{N}\}$$

2. $\{w : \#_a(w) = \#_b(w) = \#_c(w)\}$
3. $\{a^{n^2} : n \in \mathbb{N}\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? **Vote** Y, N, UNK TO BILL.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

One can show the following languages are not CFL using the PL.

1.
$$\{a^{n}b^{n}c^{n}: n \in \mathbb{N}\}$$

2. $\{w: \#_{a}(w) = \#_{b}(w) = \#_{c}(w)\}$
3. $\{a^{n^{2}}: n \in \mathbb{N}\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? **Vote** Y, N, UNK TO BILL.

No.

One can show the following languages are not CFL using the PL.

1.
$$\{a^{n}b^{n}c^{n}: n \in \mathbb{N}\}$$

2. $\{w: \#_{a}(w) = \#_{b}(w) = \#_{c}(w)\}$
3. $\{a^{n^{2}}: n \in \mathbb{N}\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? **Vote** Y, N, UNK TO BILL.

No.

Theorem Let $L \subseteq a^*$. If L is not regular then L is not a CFL.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や