Misc Context Free Languages Stuff

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).
The Three Theorems

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).
The Three Theorems

1. If L is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).
The Three Theorems

1. If L is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.
2. If $w \in \Sigma^{*}$ and $|w|=n$ then there is a CFL for w with $O(n)$ rules.

Misc CFG Stuff

The following three theorems about CFL's that I meant to do earlier but didn't. So I do them now.

We will get back to CSL's later (today or the next lecture).
The Three Theorems

1. If L is a Context Free Langauge then there is a CFL for it in Chomsky Normal Form.
2. If $w \in \Sigma^{*}$ and $|w|=n$ then there is a CFL for w with $O(n)$ rules.
3. Pumping Theorem for CFL.

Every CFL has a CFG in CNF

Recall Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

Recall Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).

Recall Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).

Recall Chomsky Normal Form

Def CFG G is in Chomsky Normal Form if the rules are all of the following form:

1) $A \rightarrow B C$ where $A, B, C \in N$ (nonterminals).
2) $A \rightarrow \sigma$ (where $A \in N$ and $\sigma \in \Sigma$).
3) $S \rightarrow e$ (where S is the start state).

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa
$A \rightarrow$ ааа

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa
$A \rightarrow$ ааа
$A \rightarrow B$

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa
$A \rightarrow$ ааа
$A \rightarrow B$
$B \rightarrow B a B$

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa
$A \rightarrow$ ааа
$A \rightarrow B$
$B \rightarrow B a B$
$B \rightarrow b A b B$

Main Theorem about Chomsky Normal Form

Theorem If L is a CFL then there exists a CFL in CNF for L.
Example We take a CFL and show how to create a CFG in CNF for it.
$S \rightarrow$ aabaA
$A \rightarrow$ SBaa
$A \rightarrow$ ааа
$A \rightarrow B$
$B \rightarrow B a B$
$B \rightarrow b A b B$
$B \rightarrow b A A b$

Transforming $S \rightarrow$ aabaA

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals
[abaA], [baA], [aA], [a]

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals
[abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals [abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$
$[a b a A] \rightarrow[a][b a A]$

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals [abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$
$[a b a A] \rightarrow[a][b a A]$
$[b a A] \rightarrow[b][a A]$

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals [abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$
$[a b a A] \rightarrow[a][b a A]$
$[b a A] \rightarrow[b][a A]$
$[a A] \rightarrow[a] A$

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals [abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$
$[a b a A] \rightarrow[a][b a A]$
$[b a A] \rightarrow[b][a A]$
$[a A] \rightarrow[a] A$
$[a] \rightarrow a$

Transforming $S \rightarrow$ aabaA

$S \rightarrow$ aabaA
Make it into the following rules with NEW nonterminals [abaA], [baA], [aA], [a]
$S \rightarrow[a][a b a A]$
$[a b a A] \rightarrow[a][b a A]$
$[b a A] \rightarrow[b][a A]$
$[a A] \rightarrow[a] A$
$[a] \rightarrow a$
$[b] \rightarrow b$

Transforming ...

Transforming ...

$S \rightarrow$ aabaA

Transforming ...

$S \rightarrow$ aabaA Done

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ ааа

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aaa Can Use Same Method as on $S \rightarrow a a b a A$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aаa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow B$ Oh! Need New Technique!

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$ Can Use Same Method as on $S \rightarrow a a b a A$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A b B$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A b B$ Can Use Same Method as on $S \rightarrow a a b a A$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aаa Can Use Same Method as on $S \rightarrow$ aaba A
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A b B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A A b$

Transforming ...

$S \rightarrow$ aabaA Done
$A \rightarrow$ SBaa Can Use Same Method as on $S \rightarrow a a b a A$
$A \rightarrow$ aаa Can Use Same Method as on $S \rightarrow$ aaba A
$A \rightarrow B$ Oh! Need New Technique!
$B \rightarrow B a B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A b B$ Can Use Same Method as on $S \rightarrow a a b a A$
$B \rightarrow b A A b$ Can Use Same Method as on $S \rightarrow a a b a A$

Transforming $A \rightarrow B$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ ааа

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$ No Add Needed

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$ No Add Needed
$B \rightarrow b A b B$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$ No Add Needed
$B \rightarrow b A b B$ Add $B \rightarrow b B b B$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$ No Add Needed
$B \rightarrow b A b B$ Add $B \rightarrow b B b B$
$B \rightarrow b A A b$

Transforming $A \rightarrow B$

Discuss How to deal with $A \rightarrow B$?
$A \rightarrow B$ We will remove this!
$S \rightarrow$ aabaA Add $S \rightarrow$ aabaB
$A \rightarrow$ SBaa No Add Needed
$A \rightarrow$ aaa No Add Needed
$B \rightarrow B a B$ No Add Needed
$B \rightarrow b A b B$ Add $B \rightarrow b B b B$
$B \rightarrow b A A b$ Add $B \rightarrow b B A b|b A B b| b B B b$

Just Do that For Every Rule

Just Do that For Every Rule

1. For every rule of the form $S \rightarrow \alpha$ where $|\alpha| \geq 2$ do what I did for $S \rightarrow$ aabaA.

Just Do that For Every Rule

1. For every rule of the form $S \rightarrow \alpha$ where $|\alpha| \geq 2$ do what I did for $S \rightarrow$ aabaA.
2. For every rule of the form $X \rightarrow Y$ do what I did for $A \rightarrow B$.

CNF for $\{w\}$

4ロ〉4司〉4 三〉4 三

CNF for $\{a a b b b a b\}$

Example CNF for $\{a a b b b a b\}$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$
$[A] \rightarrow a$

CNF for $\{a a b b b a b\}$

Example CNF for $\{$ aabbbab $\}$
$S \rightarrow[A][A B B B A B]$
$[A B B B A B] \rightarrow[A][B B B A B]$
$[B B B A B] \rightarrow[B][B B A B]$
$[B B A B] \rightarrow[B][B A B]$
$[B A B] \rightarrow[B][A B]$
$[A B] \rightarrow[A][B]$
$[A] \rightarrow a$
$[B] \rightarrow b$

CNF for $\{w\}$

$$
\text { 4ロ>4甸 } 1 \text { 三 }
$$

CNF for $\{w\}$

1. You can do something similar for any w.

CNF for $\{w\}$

1. You can do something similar for any w.
2. If $|w|=n$ then the CFG will be $O(n)$ rules.

Speculation

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
4. Can you find an actual string w such that

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
4. Can you find an actual string w such that 4.1 There is a CFG in CNG form for $\{w\}$ of size $O\left(n^{1 / 2}\right)$.

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
4. Can you find an actual string w such that
4.1 There is a CFG in CNG form for $\{w\}$ of size $O\left(n^{1 / 2}\right)$.
4.2 Every CFG in CNG form for $\{w\}$ is of size $\Omega\left(n^{1 / 2}\right)$.

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
4. Can you find an actual string w such that
4.1 There is a CFG in CNG form for $\{w\}$ of size $O\left(n^{1 / 2}\right)$.
4.2 Every CFG in CNG form for $\{w\}$ is of size $\Omega\left(n^{1 / 2}\right)$.
5. The same question for other functions between $\log n$ and n

Speculation

1. $\left\{a^{n}\right\}$: There is a CFG in CNF with $O(\log n)$ rules.
2. $\{w\}:|w|=n$. There is a CFG in CNF with $O(n)$ rules.
3. Can you find an actual string w that REQUIRES $\Omega(n)$ rules.
4. Can you find an actual string w such that 4.1 There is a CFG in CNG form for $\{w\}$ of size $O\left(n^{1 / 2}\right)$.
4.2 Every CFG in CNG form for $\{w\}$ is of size $\Omega\left(n^{1 / 2}\right)$.
5. The same question for other functions between $\log n$ and n

We will return to this question later in the course.

Pumping Theorem For CFL＇s

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.
3. For all $i \geq 0, u v^{i} x y^{i} z \in L$.

Pumping Theorem for CFL's

Pumping Lemma (PL) If L is a CFL then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist u, v, x, y, z such that:

1. $w=u v x y z$ and either $v \neq e$ or $y \neq e$.
2. $|v x y| \leq n_{1}$.
3. For all $i \geq 0, u v^{i} x y^{i} z \in L$.

Proof involves looking at the Parse Tree for w and finding some nonterminal T twice in the tree. We will not be doing the proof.

Languages that are not CFL

One can show the following languages are not CFL using the PL.

Languages that are not CFL

One can show the following languages are not CFL using the PL. 1. $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$

Languages that are not CFL

One can show the following languages are not CFL using the PL.

1. $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$
2. $\left\{w: \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$

Languages that are not CFL

One can show the following languages are not CFL using the PL.

1. $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$
2. $\left\{w: \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$
3. $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$

Languages that are not CFL

One can show the following languages are not CFL using the PL.

1. $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$
2. $\left\{w: \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$
3. $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? Vote Y, N, UNK TO BILL.

Languages that are not CFL

One can show the following languages are not CFL using the PL.

1. $\left\{a^{n} b^{n} c^{n}: n \in \mathrm{~N}\right\}$
2. $\left\{w: \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$
3. $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? Vote Y, N, UNK TO BILL.

No.

Languages that are not CFL

One can show the following languages are not CFL using the PL.

1. $\left\{a^{n} b^{n} c^{n}: n \in N\right\}$
2. $\left\{w: \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\}$
3. $\left\{a^{n^{2}}: n \in \mathrm{~N}\right\}$

Is there a language on $\{a\}$ that is a CFL but is not regular? Vote Y, N, UNK TO BILL.

No.
Theorem Let $L \subseteq a^{*}$. If L is not regular then L is not a CFL.

