BILL AND NATHAN RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Nondeterministic Finite Automata (NFA): Closure Properties

Terminology: Reg Langs

Def A lang L is reg if there exists a DFA M such that $L=L(M)$.

Terminology: Reg Langs

Def A lang L is reg if there exists a DFA M such that $L=L(M)$.
Since DFA's and NFA's are equivalent.
Def A lang L is reg if there exists an NFA M such that $L=L(M)$. We use this definition of reg for this slide packet.

Terminology: Reg Langs

Def A lang L is reg if there exists a DFA M such that $L=L(M)$.
Since DFA's and NFA's are equivalent.
Def A lang L is reg if there exists an NFA M such that $L=L(M)$. We use this definition of reg for this slide packet.

We prove closure properties (or say NO, not going to prove it) of reg langs using NFA's.

Terminology: Reg Langs

Def A lang L is reg if there exists a DFA M such that $L=L(M)$.
Since DFA's and NFA's are equivalent.
Def A lang L is reg if there exists an NFA M such that $L=L(M)$. We use this definition of reg for this slide packet.

We prove closure properties (or say NO, not going to prove it) of reg langs using NFA's.

We will keep track of number-of-states.

Reg Langs Closed Under Complementation

How do you complement a reg lang (not a joke)?

Reg Langs Closed Under Complementation

How do you complement a reg lang (not a joke)?
Caution Swapping the final and non-final states DOES NOT WORK for an NFA.

Reg Langs Closed Under Complementation

How do you complement a reg lang (not a joke)?
Caution Swapping the final and non-final states DOES NOT WORK for an NFA.

See next slide.

$\left\{a^{n}: n \not \equiv 0(\bmod 6)\right\}$

Final and Non-final States Swapped

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.
Now you have a 2^{n} state DFA, and hence a 2^{n}-state NFA for \bar{L}.

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.
Now you have a 2^{n} state DFA, and hence a 2^{n}-state NFA for \bar{L}.
Is there a more efficient proof?

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.
Now you have a 2^{n} state DFA, and hence a 2^{n}-state NFA for \bar{L}.
Is there a more efficient proof?
No. There are langs L where:

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.
Now you have a 2^{n} state DFA, and hence a 2^{n}-state NFA for \bar{L}.
Is there a more efficient proof?
No. There are langs L where:

- there is an NFA for L is size n.

Reg Langs Closed Under Complementation (cont)

Upshot It is not possible (or very clunky) to prove closure under complementation using JUST NFA's.
Can Use NFA-DFA equivalence:
L recognized by an n-state NFA.
Convert to a 2^{n}-state DFA.
Take the complement.
Now you have a 2^{n} state DFA, and hence a 2^{n}-state NFA for \bar{L}.
Is there a more efficient proof?
No. There are langs L where:

- there is an NFA for L is size n.
- any NFA for \bar{L} is of size $\geq \sim 2^{n}$. See next slide for this example.

Example of a Blowup for Complementation

Example of a language L_{n} such that

Example of a Blowup for Complementation

Example of a language L_{n} such that

1. There is an NFA for L that is small.

Example of a Blowup for Complementation

Example of a language L_{n} such that

1. There is an NFA for L that is small.
2. Every NFA for \bar{L} is large.

Example of a Blowup for Complementation

Example of a language L_{n} such that 1. There is an NFA for L that is small.
2. Every NFA for \bar{L} is large.

Let M_{n} be the product of the first n primes.

Example of a Blowup for Complementation

Example of a language L_{n} such that 1. There is an NFA for L that is small.
2. Every NFA for \bar{L} is large.

Let M_{n} be the product of the first n primes.

$$
L_{n}=\left\{a^{i}: i \not \equiv M_{n} \quad\left(\bmod M_{n}\right)\right\} .
$$

Example of a Blowup for Complementation

Example of a language L_{n} such that 1. There is an NFA for L that is small.
2. Every NFA for \bar{L} is large.

Let M_{n} be the product of the first n primes.

$$
L_{n}=\left\{a^{i}: i \not \equiv M_{n} \quad\left(\bmod M_{n}\right)\right\} .
$$

1. There is an NFA for L_{n} of size $O\left(p_{1}+\cdots+p_{n}\right)=O\left(\frac{n^{2}}{\log (n)^{2}}\right)$.

Example of a Blowup for Complementation

Example of a language L_{n} such that

1. There is an NFA for L that is small.
2. Every NFA for \bar{L} is large.

Let M_{n} be the product of the first n primes.

$$
L_{n}=\left\{a^{i}: i \not \equiv M_{n} \quad\left(\bmod M_{n}\right)\right\} .
$$

1. There is an NFA for L_{n} of size $O\left(p_{1}+\cdots+p_{n}\right)=O\left(\frac{n^{2}}{\log (n)^{2}}\right)$.
2. Any NFA for $\overline{L_{n}}$ requires size $\Omega\left(p_{1} p_{2} \cdots p_{n}\right)=\Omega\left(e^{n \log n}\right)$.

Reg Langs Closed Under Union-Intuition

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cup L_{2}$ is reg.

Reg Langs Closed Under Union-Intuition

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cup L_{2}$ is reg. Informally Create an NFA that branches both ways with e-transitions.

Reg Langs Closed Under Union-Intuition

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cup L_{2}$ is reg. Informally Create an NFA that branches both ways with e-transitions.

See next slide.

Reg Langs Closed Under Union-Picture

Reg Langs Closed Under Union-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} \cup L_{2}$ is reg via NFA

Reg Langs Closed Under Union-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} \cup L_{2}$ is reg via NFA

$$
\left(\left\{s^{\prime}\right\} \cup Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s^{\prime}, F_{1} \cup F_{2}\right)
$$

where for $i=1$ or 2 , If $q \in Q_{i}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{i}(q, \sigma)$.

Reg Langs Closed Under Union-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} \cup L_{2}$ is reg via NFA

$$
\left(\left\{s^{\prime}\right\} \cup Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s^{\prime}, F_{1} \cup F_{2}\right)
$$

where for $i=1$ or 2 ,
If $q \in Q_{i}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{i}(q, \sigma)$.
$\Delta^{\prime}\left(s^{\prime}, e\right)=\left\{s_{1}, s_{2}\right\}$.

Reg Langs Closed Under Union-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} \cup L_{2}$ is reg via NFA

$$
\left(\left\{s^{\prime}\right\} \cup Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s^{\prime}, F_{1} \cup F_{2}\right)
$$

where for $i=1$ or 2 ,
If $q \in Q_{i}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{i}(q, \sigma)$.
$\Delta^{\prime}\left(s^{\prime}, e\right)=\left\{s_{1}, s_{2}\right\}$.
Note The number of states in NFA for $L_{1} \cup L_{2}$ is $n_{1}+n_{2}+1$.

Reg Langs Closed Under Union-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} \cup L_{2}$ is reg via NFA

$$
\left(\left\{s^{\prime}\right\} \cup Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s^{\prime}, F_{1} \cup F_{2}\right)
$$

where for $i=1$ or 2 ,
If $q \in Q_{i}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{i}(q, \sigma)$.
$\Delta^{\prime}\left(s^{\prime}, e\right)=\left\{s_{1}, s_{2}\right\}$.
Note The number of states in NFA for $L_{1} \cup L_{2}$ is $n_{1}+n_{2}+1$. Note When we did closure using DFA's, we got $n_{1} n_{2}$.

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg.

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg. Vote

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg. Vote

1. Impossible or clunky to do with NFAs.

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg.
Vote

1. Impossible or clunky to do with NFAs.
2. One CAN do this with NFAs but still gets $n_{1} n_{2}$ states.

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg.
Vote

1. Impossible or clunky to do with NFAs.
2. One CAN do this with NFAs but still gets $n_{1} n_{2}$ states.
3. One CAN do this with NFAs and we get $<n_{1} n_{2}$ states.

Reg Langs Closed Under Intersection

IF L_{1}, L_{2} are reg we want to show that $L_{1} \cap L_{2}$ is reg.
Vote

1. Impossible or clunky to do with NFAs.
2. One CAN do this with NFAs but still gets $n_{1} n_{2}$ states.
3. One CAN do this with NFAs and we get $<n_{1} n_{2}$ states.

Answer Option 2: Can do with NFAs but gets $n_{1} n_{2}$ states.
It is a cross product construction. Next Slide.

Reg Langs Closed Under Intersection: Proof

Let $M_{1}=\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ be an NFA for L_{1}
Let $M_{2}=\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$ be an NFA for L_{2}
From M_{1} and M_{2} construct an NFA M for $L_{1} \cap L_{2}$.

Reg Langs Closed Under Intersection: Proof

Let $M_{1}=\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ be an NFA for L_{1}
Let $M_{2}=\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$ be an NFA for L_{2}
From M_{1} and M_{2} construct an NFA M for $L_{1} \cap L_{2}$.
$M=\left(Q_{1} \times Q_{2}, \Sigma, \Delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)$ where

Reg Langs Closed Under Intersection: Proof

Let $M_{1}=\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ be an NFA for L_{1}
Let $M_{2}=\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$ be an NFA for L_{2}
From M_{1} and M_{2} construct an NFA M for $L_{1} \cap L_{2}$.
$M=\left(Q_{1} \times Q_{2}, \Sigma, \Delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)$ where
$\Delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=$

Reg Langs Closed Under Intersection: Proof

Let $M_{1}=\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ be an NFA for L_{1}
Let $M_{2}=\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$ be an NFA for L_{2}
From M_{1} and M_{2} construct an NFA M for $L_{1} \cap L_{2}$.
$M=\left(Q_{1} \times Q_{2}, \Sigma, \Delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)$ where
$\Delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=$
$\left\{\left(p_{1}, p_{2}\right): p_{1} \in \Delta_{1}\left(q_{1}, \sigma\right) \wedge p_{2} \in \Delta_{2}\left(q_{2}, \sigma\right)\right\}$

Reg Langs Closed Under Concat-Intuitively

Have an e-transition from final state of M_{1} to start state of M_{2}.

Reg Langs Closed Under Concat-Intuitively

Have an e-transition from final state of M_{1} to start state of M_{2}. Generic picture on next slide.

Reg Langs Closed Under Concat-Picture

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$ and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$ and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$ and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

If $q \in Q_{1}-F_{1}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$ and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

If $q \in Q_{1}-F_{1}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \sigma \in \Sigma$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

If $q \in Q_{1}-F_{1}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \sigma \in \Sigma$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \Delta^{\prime}(q, e)=\Delta_{1}(q, e) \cup\left\{s_{2}\right\}$.

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

If $q \in Q_{1}-F_{1}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \sigma \in \Sigma$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \Delta^{\prime}(q, e)=\Delta_{1}(q, e) \cup\left\{s_{2}\right\}$.
If $q \in Q_{2}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{2}(q, \sigma)$.

Reg Langs Closed Under Concat-Formally

Formally If L_{1} is reg via NFA

$$
\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right) . \text { We will take }\left|Q_{1}\right|=n_{1}
$$

and L_{2} is reg via NFA

$$
\left(Q_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right) . \text { We will take }\left|Q_{2}\right|=n_{2} .
$$

then $L_{1} L_{2}$ is reg via NFA

$$
\left(Q_{1} \cup Q_{2}, \Sigma, \Delta^{\prime}, s_{1}, F_{2}\right)
$$

If $q \in Q_{1}-F_{1}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \sigma \in \Sigma$ then $\Delta^{\prime}(q, \sigma)=\Delta_{1}(q, \sigma)$.
If $q \in F_{1}, \Delta^{\prime}(q, e)=\Delta_{1}(q, e) \cup\left\{s_{2}\right\}$.
If $q \in Q_{2}, \sigma \in \Sigma \cup\{e\}$ then $\Delta^{\prime}(q, \sigma)=\Delta_{2}(q, \sigma)$.
Number of states: $n_{1}+n_{2}$.

Reg Langs Closed Under $*$?-Intuition-1st Try

Have an e-transition from final states of M to start state of M.

Reg Langs Closed Under $*$?-Intuition-1st Try

Have an e-transition from final states of M to start state of M. Next slide has a generic picture of this approach.

Reg Langs Closed Under $*$?-Intuition-1st Try

Have an e-transition from final states of M to start state of M.
Next slide has a generic picture of this approach.
Spoiler Alert This will not work.

Reg Langs Closed Under *?-Picture-1st Try

What Goes Wrong with 1st Try?

What goes wrong?

What Goes Wrong with 1st Try?

What goes wrong?
We want e to be accepted.

What Goes Wrong with 1st Try?

What goes wrong?
We want e to be accepted.
Next slide has an NFA where this does not work.

What Goes Wrong with 1st Try?-Picture

Reg Langs Closed Under *?-Intuition-2nd Try

Have an e-transition from final states of M to start state of M AND make s a final state.

Reg Langs Closed Under $*$?-Intuition-2nd Try

Have an e-transition from final states of M to start state of M AND make s a final state.
Next slide has a generic picture of this approach.

Reg Langs Closed Under $*$?-Intuition-2nd Try

Have an e-transition from final states of M to start state of M AND make s a final state.
Next slide has a generic picture of this approach.
Spoiler Alert This will not work.

Reg Langs Closed Under *?-Picture-2nd Try

What Goes Wrong with 2nd Try

What goes wrong?

What Goes Wrong with 2nd Try

What goes wrong?
Might accept too much.

What Goes Wrong with 2nd Try

What goes wrong?
Might accept too much.
Next slide has an NFA where this does not work.

What Goes Wrong with 2nd Try-Picture

Reg Langs Closed Under $*$?-Intuition-3rd Try

Have an e-transition from final states of M to a NEW start state of M. That NEW start state is a final state and has an e-trans to old start state.

Reg Langs Closed Under $*$?-Intuition-3rd Try

Have an e-transition from final states of M to a NEW start state of M. That NEW start state is a final state and has an e-trans to old start state.
Next slide has a generic picture of this approach.

Reg Langs Closed Under $*$?-Intuition-3rd Try

Have an e-transition from final states of M to a NEW start state of M. That NEW start state is a final state and has an e-trans to old start state.
Next slide has a generic picture of this approach.
Spoiler Alert This will work.

Reg Langs Closed Under *?-Picture-3rd Try

Reg Langs Closed Under *?-Formally

Might be a HW or exam question.

Summary of Closure Properties and Proofs

X means can't prove easily
$n_{1}+n_{2}$ (and similar) is number of states in new machine if L_{i} reg via n_{i}-state machine.

Closure Property	DFA	NFA
$L_{1} \cup L_{2}$	$n_{1} n_{2}$	$n_{1}+n_{2}+1$
$L_{1} \cap L_{2}$	$n_{1} n_{2}$	$n_{1} n_{2}$
$L_{1} \cdot L_{2}$	X	$n_{1}+n_{2}$
\bar{L}	n	X
L^{*}	X	$n+1$

BILL AND NATHAN STOP RECORDING LECTURE!!!!

BILL AND NATHAN STOP RECORDING LECTURE!!!

