BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Nondeterministic Finite Automata (NFA)

An Interesting Example of a DFA

With neighbor find DFA's for the following. Note numb. states.
$\Sigma^{*} a$
$\Sigma^{*} a \Sigma$
$\Sigma^{*} a \Sigma^{2}$

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table.

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table.
Might be on $2\{\mathrm{HW}$, MIDTERM, FINAL $\}$.

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table.
Might be on 2 (HW, MIDTERM, FINAL $\}$.
8 possibilities.

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table. Might be on $2\{\mathrm{HW}$, MIDTERM, FINAL $\}$.
8 possibilities.
Is there a smaller DFA for $\Sigma^{*} a \Sigma^{i}$? Fewer than 2^{i+1} states?

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table.
Might be on $2\{\mathrm{HW}$, MIDTERM, FINAL $\}$.
8 possibilities.
Is there a smaller DFA for $\Sigma^{*} a \Sigma^{i}$? Fewer than 2^{i+1} states? No.
We may prove this later.

$\Sigma^{*} a \Sigma^{2}$

https://www.cs.umd.edu/users/gasarch/COURSES/452/S21/ notes/dfa3.JPG
The number of states is 8 .
More generally:
$\Sigma^{*} a \Sigma^{i}$ can be done with 2^{i+1} states.
Prove for $\Sigma^{*} a \Sigma^{3}$, with a table.
Might be on $2\{\mathrm{HW}$, MIDTERM, FINAL $\}$.
8 possibilities.
Is there a smaller DFA for $\Sigma^{*} a \Sigma^{i}$? Fewer than 2^{i+1} states? No.
We may prove this later.
We now use NFA's informally.

All You Need to Know About NFA's For Now

All You Need to Know About NFA's For Now

1. From a state q and a symbol σ there may be ≥ 2 states to go to.

All You Need to Know About NFA's For Now

1. From a state q and a symbol σ there may be ≥ 2 states to go to.
2. From a state q and no symbols there may be ≥ 1 states to go to. (We use e for empty string.)

All You Need to Know About NFA's For Now

1. From a state q and a symbol σ there may be ≥ 2 states to go to.
2. From a state q and no symbols there may be ≥ 1 states to go to. (We use e for empty string.)
3. An NFA accepts a string if there is some way to process the string and get to a final state.

NFA for $\Sigma^{*} a \Sigma^{2}$

NFA for $\Sigma^{*} a \Sigma^{2}$

DFA had 8 states. NFA has 4 states.

NFA for $\Sigma^{*} a \Sigma^{3}$

Recall that DFA for $\Sigma^{*} a \Sigma^{3}$ used 16 states.

NFA for $\Sigma^{*} a \Sigma^{3}$

Recall that DFA for $\Sigma^{*} a \Sigma^{3}$ used 16 states.
Draw an NFA for $\Sigma^{*} a \Sigma^{3}$.

NFA for $\Sigma^{*} a \Sigma^{3}$

Recall that DFA for $\Sigma^{*} a \Sigma^{3}$ used 16 states.
Draw an NFA for $\Sigma^{*} a \Sigma^{3}$.
How many states?

NFA for $\Sigma^{*} a \Sigma^{3}$

Recall that DFA for $\Sigma^{*} a \Sigma^{3}$ used 16 states.
Draw an NFA for $\Sigma^{*} a \Sigma^{3}$.
How many states?
Make a conjecture for number of states for NFA for $\Sigma^{*} a \Sigma^{n}$.

NFA for $\Sigma^{*} a \Sigma^{3}$

Recall that DFA for $\Sigma^{*} a \Sigma^{3}$ used 16 states.
Draw an NFA for $\Sigma^{*} a \Sigma^{3}$.
How many states?
Make a conjecture for number of states for NFA for $\Sigma^{*} a \Sigma^{n}$.
Upshot Seems like NFA uses far fewer state than DFA for $\Sigma^{*} a \Sigma^{n}$.

$\{w: \# a(w) \equiv 0(\bmod 3) \vee \# b(w) \equiv 0(\bmod 4)\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA?

$\{w: \# a(w) \equiv 0(\bmod 3) \vee \# b(w) \equiv 0(\bmod 4)\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote

$\{w: \# a(w) \equiv 0(\bmod 3) \vee \# b(w) \equiv 0(\bmod 4)\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote

YES - next slide.

$\{w: \# a(w) \equiv 0(\bmod 3) \vee \# b(w) \equiv 0(\bmod 4)\}$

$\{w: \# a(w) \equiv 0(\bmod 3) \wedge \# b(w) \equiv 0(\bmod 4)\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA?

$\left\{w: \#_{a}(w) \equiv 0(\bmod 3) \wedge \#_{b}(w) \equiv 0(\bmod 4)\right\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote

$\left\{w: \#_{a}(w) \equiv 0(\bmod 3) \wedge \#_{b}(w) \equiv 0(\bmod 4)\right\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote
NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

$\left\{w: \#_{a}(w) \equiv 0(\bmod 3) \wedge \#_{b}(w) \equiv 0(\bmod 4)\right\}$

The DFA for this requires 12 states. Can we do this with a smaller NFA? Vote
NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.
Or might be on HW-MID-FINAL.

$\left\{a^{n}: n \not \equiv 0(\bmod 15)\right\}$

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? Vote

$\left\{a^{n}: n \not \equiv 0(\bmod 15)\right\}$

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? Vote
YES - next slide

$\left\{a^{n}: n \not \equiv 0(\bmod 15)\right\}$

$\left\{a^{n}: n \not \equiv 0(\bmod 15)\right\}$

Prove that the NFA in the last slide works.
Need

$$
(n \not \equiv 0 \quad(\bmod 3) \vee n \not \equiv 0 \quad(\bmod 5)) \Longrightarrow n \not \equiv 0 \quad(\bmod 15)
$$

Take the contrapositive

$$
n \equiv 0 \quad(\bmod 15) \Longrightarrow(n \equiv 0 \quad(\bmod 3) \wedge n \equiv 0 \quad(\bmod 5))
$$

$\left\{a^{n}: n \equiv 0(\bmod 15)\right\}$

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? Vote

$\left\{a^{n}: n \equiv 0(\bmod 15)\right\}$

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? Vote
NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.

$\left\{a^{n}: n \equiv 0(\bmod 15)\right\}$

Note A DFA for this requires 15 states. Can a smaller NFA recognize it? Vote
NO. Proof similar to that for DFA. Will come back to this after we define NFA rigorously.
Or might be on HW-MID-FINAL.

NFA's Intuitively

1. An NFA is a DFA that can guess.
2. NFAs do not really exist.
3. Good for U since can guess which one.
4. An NFA accepts iff SOME guess accepts.

NFA Formally

Def An NFA is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$ is the transition function.
4. $s \in S$ is the start state.
5. $F \subseteq Q$ is the set of final states.

NFA Formally

Def An NFA is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$ is the transition function.
4. $s \in S$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is an NFA and $x \in \Sigma^{*}$ then $\boldsymbol{M}(\boldsymbol{x})$ accepts if when you run M on x some sequence of guesses end up in a final state.

NFA Formally

Def An NFA is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$ is the transition function.
4. $s \in S$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is an NFA and $x \in \Sigma^{*}$ then $\boldsymbol{M}(\boldsymbol{x})$ accepts if when you run M on x some sequence of guesses end up in a final state. Note When you run $M(x)$ and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.

NFA Formally

Def An NFA is a tuple $(Q, \Sigma, \Delta, s, F)$ where:

1. Q is a finite set of states.
2. Σ is a finite alphabet.
3. $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$ is the transition function.
4. $s \in S$ is the start state.
5. $F \subseteq Q$ is the set of final states.

Def If M is an NFA and $x \in \Sigma^{*}$ then $\boldsymbol{M}(\boldsymbol{x})$ accepts if when you run M on x some sequence of guesses end up in a final state. Note When you run $M(x)$ and choose a path one of three things can happen: (1) ends in a final state, (2) ends in a non-final state, (3) cannot process.

Def If M is an NFA then $L(M)=\{x: M(x)$ accepts $\}$.

Three Way to Think About NFAs

Three Way to Think About NFAs

- Computational (with parallelism): Fork new computational threads whenever there is a choice. Accept if any thread accepts.

Three Way to Think About NFAs

- Computational (with parallelism): Fork new computational threads whenever there is a choice. Accept if any thread accepts.
- Mathematical: Create tree with branches whenever there is a choice. Accept if any leaf accepts.

Three Way to Think About NFAs

- Computational (with parallelism): Fork new computational threads whenever there is a choice. Accept if any thread accepts.
- Mathematical: Create tree with branches whenever there is a choice. Accept if any leaf accepts.
- Magic: Guess at each nondeterministic step which way to go. Machine always makes right guess if there is one.

Is Every NFA-lang a DFA-lang?

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
SO, is every NFA-lang also a DFA-lang?

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
SO, is every NFA-lang also a DFA-lang? Vote.

Is Every NFA-lang a DFA-lang?

1. We have seen several langs where the NFA is smaller than the DFA.
2. We have NOT seen any langs that an NFA can do but a DFA cannot do.
SO, is every NFA-lang also a DFA-lang? Vote. Yes.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.
Notation $\Delta\left(q, e^{i} \sigma e^{j}\right)$ means that we take state q, feed in e i times, then feed in σ, then feed in $e j$ times. Do all possible transitions so this will be a set of states.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by $\operatorname{NFA}(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.
Notation $\Delta\left(q, e^{i} \sigma e^{j}\right)$ means that we take state q, feed in $e i$ times, then feed in σ, then feed in $e j$ times. Do all possible transitions so this will be a set of states.

$$
\Delta_{1}(q, \sigma)=\bigcup_{0 \leq i, j \leq n} \Delta\left(q, e^{i} \sigma e^{j}\right)
$$

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.
Notation $\Delta\left(q, e^{i} \sigma e^{j}\right)$ means that we take state q, feed in $e i$ times, then feed in σ, then feed in $e j$ times. Do all possible transitions so this will be a set of states.

$$
\Delta_{1}(q, \sigma)=\bigcup_{0 \leq i, j \leq n} \Delta\left(q, e^{i} \sigma e^{j}\right)
$$

NFA $\left(Q, \Sigma, \Delta_{1}, s, F\right)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.
Notation $\Delta\left(q, e^{i} \sigma e^{j}\right)$ means that we take state q, feed in $e i$ times, then feed in σ, then feed in $e j$ times. Do all possible transitions so this will be a set of states.

$$
\Delta_{1}(q, \sigma)=\bigcup_{0 \leq i, j \leq n} \Delta\left(q, e^{i} \sigma e^{j}\right)
$$

NFA $\left(Q, \Sigma, \Delta_{1}, s, F\right)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$. We will work with an NFA that has NO e-transitions.

Every NFA-lang a DFA-lang!

Thm If L is accepted by an NFA then L is accepted by a DFA. $\operatorname{Pf} L$ is accepted by NFA $(Q, \Sigma, \Delta, s, F)$ where $\Delta: Q \times(\Sigma \cup\{e\}) \rightarrow 2^{Q}$.
First we get rid of the e-transitions.
Notation $\Delta\left(q, e^{i} \sigma e^{j}\right)$ means that we take state q, feed in $e i$ times, then feed in σ, then feed in $e j$ times. Do all possible transitions so this will be a set of states.

$$
\Delta_{1}(q, \sigma)=\bigcup_{0 \leq i, j \leq n} \Delta\left(q, e^{i} \sigma e^{j}\right) .
$$

NFA $\left(Q, \Sigma, \Delta_{1}, s, F\right)$ accepts same lang as $(Q, \Sigma, \Delta, s, F)$. We will work with an NFA that has NO e-transitions.
We are nowhere near done. Next slide.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
$\operatorname{Pf} L$ is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M. Key The DFA will keep track of the set of states that the NFA could have been in.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}.
$\delta: 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}. $\delta: 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

$$
\delta(A, \sigma)=\bigcup_{q \in A} \Delta(q, \sigma)
$$

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
Pf L is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}. $\delta: 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

$$
\begin{aligned}
& \delta(A, \sigma)=\bigcup_{q \in A} \Delta(q, \sigma) . \\
& F^{\prime}=\{A: A \cap F \neq \emptyset\} .
\end{aligned}
$$

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
$\operatorname{Pf} L$ is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}. $\delta: 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

$$
\begin{aligned}
& \delta(A, \sigma)=\bigcup_{q \in A} \Delta(q, \sigma) . \\
& F^{\prime}=\{A: A \cap F \neq \emptyset\} .
\end{aligned}
$$

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA.

Every NFA-lang a DFA-lang! (Cont)

Thm If L is accepted by an NFA with n states and no e-transitions then L is accepted by a DFA with $\leq 2^{n}$ states.
$\operatorname{Pf} L$ is accepted by NFA $M=(Q, \Sigma, \Delta, s, F)$ where
$\Delta: Q \times \Sigma \rightarrow 2^{Q}$.
We define a DFA that recognizes the same language as M.
Key The DFA will keep track of the set of states that the NFA could have been in.
DFA $\left(2^{Q}, \Sigma, \delta,\{s\}, F^{\prime}\right)$. Need to define δ and F^{\prime}. $\delta: 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

$$
\begin{aligned}
& \delta(A, \sigma)=\bigcup_{q \in A} \Delta(q, \sigma) . \\
& F^{\prime}=\{A: A \cap F \neq \emptyset\} .
\end{aligned}
$$

If NFA accepts on some path then in the DFA you will be in a state which is a set-of-states, which includes a final state from the NFA. If the DFA accepts then there was some way for the NFA to accept.

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

