Proving That a Language Is Not Regular

How to Represent a Language

Three ways to represent regular languages (so far)

How to Represent a Language

Three ways to represent regular languages (so far)

- DFA

How to Represent a Language

Three ways to represent regular languages (so far)

- DFA
- NFA

How to Represent a Language

Three ways to represent regular languages (so far)

- DFA
- NFA
- Regular expressions

How to Represent a Language

Three ways to represent regular languages (so far)

- DFA
- NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

How to Represent a Language

Three ways to represent regular languages (so far)

- DFA
- NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Why?

Two Methods of Proof

Two Methods of Proof

- Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.

Two Methods of Proof

- Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.
- Method 2 (Pumping Lemma (PL)): Run the DFA on one long word. By the PHP the word must visit the same state twice. Then do some magic.

Method 1

$$
4 \square>4 \text { 司 }>4 \equiv \stackrel{\equiv}{ }
$$

Have already used Method 1.

Have already used Method 1. When?

Have already used Method 1.

When?

To prove lower bounds for number of states for DFA's.

Have already used Method 1.

When?

To prove lower bounds for number of states for DFA's.

- $\{a \cup b\}^{*} a\{a \cup b\}^{n}$:

Have already used Method 1.

When?

To prove lower bounds for number of states for DFA's.
$-\{a \cup b\}^{*} a\{a \cup b\}^{n}: 2^{n+1}$.

Have already used Method 1.

When?

To prove lower bounds for number of states for DFA's.

- $\{a \cup b\}^{*} a\{a \cup b\}^{n}: 2^{n+1}$.
- a^{n} :

Have already used Method 1.

When?

To prove lower bounds for number of states for DFA's.
$-\{a \cup b\}^{*} a\{a \cup b\}^{n}: 2^{n+1}$.

- $a^{n}: n$.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Intuition

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Intuition

- DFA's only have finite memory.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Intuition

- DFA's only have finite memory.
- A DFA has to "remember" the length of an arbitrarily long sequence of a 's when processing the b 's.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Intuition

- DFA's only have finite memory.
- A DFA has to "remember" the length of an arbitrarily long sequence of a 's when processing the b 's.

Intuition is not proof.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p. Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p. Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p. Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p. Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p.
Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$
2. Rejects both $a^{i} b^{i}$ and $a^{j} b^{i}$

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p.
Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$
2. Rejects both $a^{i} b^{i}$ and $a^{j} b^{i}$

Either way, that is a contradiction.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p. Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$
2. Rejects both $a^{i} b^{i}$ and $a^{j} b^{i}$

Either way, that is a contradiction.
Intuition A DFA with m states can only "remember" m pieces of information.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p.
Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$
2. Rejects both $a^{i} b^{i}$ and $a^{j} b^{i}$

Either way, that is a contradiction.
Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{0}, a^{1}, a^{2}, \ldots, a^{m}$.
By PHP 2 inputs, a^{i} and $a^{j}(i \neq j)$, end in same state p.
Run M on both $a^{i} b^{i}$ and $a^{j} b^{i}$
They will end up in the same state q.
Hence M either

1. Accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$
2. Rejects both $a^{i} b^{i}$ and $a^{j} b^{i}$

Either way, that is a contradiction.
Intuition A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.
We do not care.

Method 2: Pumping Lemma (PL)

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states. Run M on $a^{m} b^{m}$.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$L_{1}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is Not Regular: Alt Proof

Proof Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{m-1}
$$

By PHP some state is encountered twice.
So there is a loop at that state where $k \geq 1$ a's are processed.

$a^{n+k} b^{n}$ is accepted by following the loop again. Contradiction.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same Proof

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same
Proof
Assume L_{1} is regular via DFA M with m states.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

By PHP same state encountered twice.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

By PHP same state encountered twice.
There is a loop at that state where $k \geq 1$ a's are processed. $a^{n+k} b^{n}$ is also accepted by following the loop again.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

By PHP same state encountered twice.
There is a loop at that state where $k \geq 1$ a's are processed. $a^{n+k} b^{n}$ is also accepted by following the loop again.
Contradiction.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

By PHP same state encountered twice.
There is a loop at that state where $k \geq 1$ a's are processed. $a^{n+k} b^{n}$ is also accepted by following the loop again.
Contradiction.
This idea can be formalized into the pumping lemma ...

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is not regular.

Exactly the same

Proof
Assume L_{1} is regular via DFA M with m states.
Run M on $a^{m} b^{m}$.
States encountered processing a^{m} :

$$
s_{0}, s_{1}, s_{2}, \ldots, s_{m}
$$

By PHP same state encountered twice.
There is a loop at that state where $k \geq 1$ a's are processed. $a^{n+k} b^{n}$ is also accepted by following the loop again.
Contradiction.
This idea can be formalized into the pumping lemma ...
... and we will do so.

General Technique

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$.

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$.
3. For all $i \geq 0, x y^{i} z \in L$.

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y| \leq n_{1}$.
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

General Technique

Pumping Lemma (PL) If L is regular then there exist n_{0} and n_{1} such that the following holds:
For all $w \in L,|w| \geq n_{0}$ there exist x, y, z such that:

$$
\text { 1. } w=x y z \text { and } y \neq e \text {. }
$$

2. $|x y| \leq n_{1}$.
3. For all $i \geq 0, x y^{i} z \in L$.

Proof by picture

How We Use the PL

How We Use the PL

We restate it in the way that we use it.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

How We Use the PL

We restate it in the way that we use it.
PL If L is reg then for large enough strings \mathbf{w} in L there exist x, y, z such that:

1. $w=x y z$ and $y \neq e$.
2. $|x y|$ is short.
3. for all $i, x y^{i} z \in L$.

We then find some i such that $x y^{i} z \notin L$ for the contradiction.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular
Assume L_{1} is regular.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

REDO: $L_{1}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$ is Not Regular

Assume L_{1} is regular.
By PL, for long $a^{n} b^{n} \in L_{1}, \exists x, y, z$:

1. $y \neq e$.
2. $|x y|$ is short.
3. For all $i \geq 0, x y^{i} z \in L_{1}$.

Take w long enough so that the $x y$ part only has a's.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n}$. Note $k \geq 1$.
By the PL, all of the words

$$
a^{j}\left(a^{k}\right)^{i} a^{n-j-k} b^{n}=a^{n+k(i-1)} b^{n}
$$

are in L_{1}.
Take $i=2$ to get

$$
a^{n+k} b^{n} \in L_{1}
$$

Contradiction since $k \geq 1$.

$L_{2}=\left\{w: \#_{a}(w)=\#_{b}(w)\right\}$ is Not Regular

Proof: Same Proof as L_{1} not Reg: Still look at $a^{m} b^{m}$. Key PL says for ALL long enough $w \in L$.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Think about.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b 's.

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a 's EQUAL the number of b 's.
So what do to?

$L_{3}=\left\{w: \#_{a}(w) \neq \#_{b}(w)\right\}$ is Not Regular

Think about.

PL Does Not Help. When you increase the number of y 's there is no way to control it so carefully to make the number of a's EQUAL the number of b 's.
So what do to?
If L_{3} is regular then $L_{2}=\overline{L_{3}}$ is regular. But we know that L_{2} is not regular. DONE!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.
Proof

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

Proof

By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$$
(\forall i \geq 0)\left[j+i k+\ell=n^{2}+i k \text { is a square }\right] .
$$

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$$
(\forall i \geq 0)\left[j+i k+\ell=n^{2}+i k \text { is a square }\right] .
$$

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular

Intuition Perfect squares keep getting further apart.
PL says you can always add some constant k to produce a word in the language.
Proof
By PL for long enough $a^{n^{2}} \in L_{4}$ there exist $x=a^{j}, y=a^{k}$, $z=a^{\ell}$ with $x y z=a^{n^{2}}$. Also $a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{4}$. (Note $k \geq 1$.)

$$
(\forall i \geq 0)\left[j+i k+\ell=n^{2}+i k \text { is a square }\right] .
$$

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares.
See slide for exciting finish!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$. $n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.
\vdots
So
$(\forall i \geq 1)\left[n^{2}+i k \geq(n+i)^{2}=n^{2}+2 i n+i^{2}\right]$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.
\vdots
So
$(\forall i \geq 1)\left[n^{2}+i k \geq(n+i)^{2}=n^{2}+2 i n+i^{2}\right]$. So $(\forall i)[k \geq 2 n+i]$.

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.
\vdots
So
$(\forall i \geq 1)\left[n^{2}+i k \geq(n+i)^{2}=n^{2}+2 i n+i^{2}\right]$. So $(\forall i)[k \geq 2 n+i]$.
So k is bigger than any natural number!

$L_{4}=\left\{a^{n^{2}}: n \in \mathbb{N}\right\}$ is Not Regular (cont)

So $n^{2}, n^{2}+k, n^{2}+2 k, \ldots$ are all squares. $k \geq 1$. $n^{2}+k \geq(n+1)^{2}=n^{2}+2 n+1$. So $k \geq 2 n+1$.
$n^{2}+2 k \geq(n+2)^{2}=n^{2}+4 n+4$. So $k \geq 2 n+2$.
\vdots
So
$(\forall i \geq 1)\left[n^{2}+i k \geq(n+i)^{2}=n^{2}+2 i n+i^{2}\right]$. So $(\forall i)[k \geq 2 n+i]$.
So k is bigger than any natural number!
Contradiction.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }] .
\end{gathered}
$$

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime. But $p+p k=p(k+1)$.

$L_{5}=\left\{a^{p}: p\right.$ is prime $\}$ is Not Regular

Intuition Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. Too hard. Easier proof.

Think about.

By PL, for large $p, a^{p} \in L_{5} \exists x=a^{j}, y=a^{k}, z=a^{\ell}$ such that

$$
\begin{gathered}
a^{j}\left(a^{k}\right)^{i} a^{\ell} \in L_{5} \\
(\forall i \geq 0)[j+i k+\ell \text { is prime }]
\end{gathered}
$$

So, $p, p+k, p+2 k, \ldots, p+p k$ are all prime. But $p+p k=p(k+1)$. Contradiction.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} s.

$L_{6}=\left\{\#_{a}(w)>\#_{b}(w)\right\}$ is Not Regular

We will be brief here.
Take $w=b^{n} a^{n+1}$, long enough so the y-part is in the b^{\prime} 's.
Pump the y to get more b 's than a 's.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language. So what to do? Revise PL

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise PL
PL had a bound on $|x y|$.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise PL
PL had a bound on $|x y|$.
Can also bound $|y z|$ by same proof.

$L_{7}=\left\{a^{n} b^{m}: n>m\right\}$ is Not Regular

Think about.

Problematic Can take w long and pump a's, but that won't get out of the language.
So what to do? Revise PL
PL had a bound on $|x y|$.
Can also bound $|y z|$ by same proof.
Do that and then you can get y to be all b 's, pump b 's, and get out of the language.
$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.

$$
\begin{aligned}
& w=a^{n} b^{n-1} c^{n} . \\
& x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n} .
\end{aligned}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular

Think about.

Problematic Neither pumping on the left or on the right works.
So what to do? Let's go back to the pumping lemma with a carefully chosen string.
$w=a^{n} b^{n-1} c^{n}$.
$x=a^{j}, y=a^{k}, z=a^{n-j-k} b^{n-1} c^{n}$.
For all $i \geq 0, x y^{i} z \in L_{8}$.

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.
But we can also take $i=0$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.
But we can also take $i=0$. cut out that part of the word. We take $i=0$ to get

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.
But we can also take $i=0$.
cut out that part of the word. We take $i=0$ to get

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.
But we can also take $i=0$. cut out that part of the word. We take $i=0$ to get

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

Since $k \geq 1$, we have that $\#_{a}\left(x y^{0} z\right)<n \leq n-1=\#_{b}\left(x y^{0} z\right)$. Hence $x y^{0} z \notin L_{8}$.

$L_{8}=\left\{a^{n_{1}} b^{m} c^{n_{2}}: n_{1}, n_{2}>m\right\}$ is Not Regular (Cont)

$$
x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n}
$$

For all $i x y^{i} z=a^{j+i k+(n-j-k)} b^{n-1} c^{n} \in L_{8}$.
Key We are used to thinking of i large.
But we can also take $i=0$. cut out that part of the word. We take $i=0$ to get

$$
x y^{0} z=a^{n-k} b^{n-1} c^{n}
$$

Since $k \geq 1$, we have that $\#_{a}\left(x y^{0} z\right)<n \leq n-1=\#_{b}\left(x y^{0} z\right)$. Hence $x y^{0} z \notin L_{8}$. Contradiction.

$i=0$ Case as a Picture

Lower Bounds: Looking Ahead

1. DFA's are simple enough devices that we can actually prove languages are not regular
2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
3. Poly-bounded Turing Machines seem to be complicated devices, so proving $P \neq N P$ seems to be hard.

Lower Bounds: Looking Ahead

1. DFA's are simple enough devices that we can actually prove languages are not regular
2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
3. Poly-bounded Turing Machines seem to be complicated devices, so proving $P \neq N P$ seems to be hard. However, I expect Isaac, Adam, and Sam will work it out by the end of the semester.
4. Proving problems undecidable is surprisingly easy since such proofs do not depend on the details of the model of computation.
