# Proving That a Language Is Not Regular

Three ways to represent regular languages (so far)

Three ways to represent regular languages (so far)

► DFA

Three ways to represent regular languages (so far)

- ► DFA
- ► NFA

Three ways to represent regular languages (so far)

- ► DFA
- ► NFA
- Regular expressions

Three ways to represent regular languages (so far)

- ► DFA
- ▶ NFA
- Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Three ways to represent regular languages (so far)

- ▶ DFA
- ▶ NFA
- ► Regular expressions

To prove that a language is not regular it is easiest to use DFA's.

Why?

#### Two Methods of Proof

#### Two Methods of Proof

▶ Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.

#### Two Methods of Proof

- Method 1: Run the DFA on many small words. By the pigeon hole principle (PHP) two of the words must finish in the same state. Then do some magic.
- Method 2 (Pumping Lemma (PL)): Run the DFA on one long word. By the PHP the word must visit the same state twice. Then do some magic.

# Method 1

# When?

## When?

## When?

To prove lower bounds for **number of states** for DFA's.

 $\blacktriangleright \{a \cup b\}^* a \{a \cup b\}^n$ :

## When?

```
ightharpoonup \{a \cup b\}^n : 2^{n+1}.
```

## When?

- $\blacktriangleright \{a \cup b\}^* a \{a \cup b\}^n : 2^{n+1}.$
- $ightharpoonup a^n$ :

# When?

- $ightharpoonup \{a \cup b\}^* a \{a \cup b\}^n : 2^{n+1}.$
- $\triangleright$   $a^n$ : n.

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

► DFA's only have finite memory.

$$L_1 = \{a^nb^n : n \ge 0\}$$
 is Not Regular

- ► DFA's only have finite memory.
- ► A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

$$L_1 = \{a^n b^n : n \ge 0\}$$
 is Not Regular

- ▶ DFA's only have finite memory.
- ▶ A DFA has to "remember" the length of an arbitrarily long sequence of a's when processing the b's.

## Intuition is not proof.

**Proof** 

$$L_1 = \{a^n b^n : n \ge 0\}$$
 is Not Regular

**Proof** Assume  $L_1$  is regular via DFA M with m states.

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ .

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p.

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p. Run M on both  $a^i b^i$  and  $a^j b^i$ 

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p. Run M on both  $a^ib^i$  and  $a^jb^i$  They will end up in the same state q.

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$  ( $i \neq j$ ), end in same state p. Run M on both  $a^ib^i$  and  $a^jb^i$  They will end up in the same state q. Hence M either

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p. Run M on both  $a^i b^i$  and  $a^j b^i$  They will end up in the same state q. Hence M either

1. Accepts both  $a^i b^i$  and  $a^j b^i$ 

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^0, a^1, a^2, \ldots, a^m$ . By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p. Run M on both  $a^ib^i$  and  $a^jb^i$  They will end up in the same state q. Hence M either

- 1. Accepts both  $a^i b^i$  and  $a^j b^i$
- 2. Rejects both  $a^i b^i$  and  $a^j b^i$

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run *M* on  $a^0, a^1, a^2, ..., a^m$ .

By PHP 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p.

Run M on both  $a^i b^i$  and  $a^j b^i$ 

They will end up in the same state q.

Hence *M* either

- 1. Accepts both  $a^i b^i$  and  $a^j b^i$
- 2. Rejects both  $a^i b^i$  and  $a^j b^i$

Either way, that is a contradiction.

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run *M* on  $a^0, a^1, a^2, ..., a^m$ .

By PHP 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p.

Run M on both  $a^i b^i$  and  $a^j b^i$ 

They will end up in the same state q.

Hence *M* either

- 1. Accepts both  $a^i b^i$  and  $a^j b^i$
- 2. Rejects both  $a^i b^i$  and  $a^j b^i$

Either way, that is a contradiction.

**Intuition** A DFA with m states can only "remember" m pieces of information.

# $L_1 = \{a^n b^n : n \ge 0\}$ is Not Regular

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run *M* on  $a^0, a^1, a^2, ..., a^m$ .

By **PHP** 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p.

Run M on both  $a^i b^i$  and  $a^j b^i$ 

They will end up in the same state q.

Hence *M* either

- 1. Accepts both  $a^i b^i$  and  $a^j b^i$
- 2. Rejects both  $a^i b^i$  and  $a^j b^i$

Either way, that is a contradiction.

**Intuition** A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.



# $L_1 = \{a^n b^n : n \ge 0\}$ is Not Regular

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run *M* on  $a^0, a^1, a^2, ..., a^m$ .

By PHP 2 inputs,  $a^i$  and  $a^j$   $(i \neq j)$ , end in same state p.

Run M on both  $a^i b^i$  and  $a^j b^i$ 

They will end up in the same state q.

Hence *M* either

- 1. Accepts both  $a^i b^i$  and  $a^j b^i$
- 2. Rejects both  $a^i b^i$  and  $a^j b^i$

Either way, that is a contradiction.

**Intuition** A DFA with m states can only "remember" m pieces of information.

This idea is formalized in the Myhill-Nerode theorem.

We do not care.



# Method 2: Pumping Lemma (PL)

**Proof** 

$$L_1 = \{a^n b^n : n \ge 0\}$$
 is Not Regular: Alt Proof

**Proof** Assume  $L_1$  is regular via DFA M with m states.

**Proof** Assume  $L_1$  is regular via DFA M with m states. Run M on  $a^m b^m$ .

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

By PHP some state is encountered twice.

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

By PHP some state is encountered twice.

So there is a loop at that state where  $k \ge 1$  a's are processed.

**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

By PHP some state is encountered twice.

So there is a loop at that state where  $k \ge 1$  a's are processed.



**Proof** Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$q_0, q_1, q_2, \ldots, q_{m-1}$$

By PHP some state is encountered twice.

So there is a loop at that state where  $k \ge 1$  a's are processed.



 $a^{n+k}b^n$  is accepted by following the loop again. Contradiction.

 $L_2 = \{w : \#_a(w) = \#_b(w)\}$  is not regular.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

**Exactly the same Proof** 

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Exactly the same Proof
Assume  $L_1$  is regular via DFA M with m states.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

Exactly the same Proof
Assume  $L_1$  is regular via DFA M with m states.
Run M on  $a^m b^m$ .

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^mb^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where  $k \ge 1$  a's are processed.  $a^{n+k}b^n$  is also accepted by following the loop again.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where  $k \ge 1$  a's are processed.  $a^{n+k}b^n$  is also accepted by following the loop again.

Contradiction.

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^m b^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where  $k \ge 1$  a's are processed.  $a^{n+k}b^n$  is also accepted by following the loop again.

Contradiction.

This idea can be formalized into the pumping lemma ...

$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is not regular.

#### **Proof**

Assume  $L_1$  is regular via DFA M with m states.

Run M on  $a^mb^m$ .

States encountered processing  $a^m$ :

$$s_0, s_1, s_2, \ldots, s_m$$

By PHP same state encountered twice.

There is a loop at that state where  $k \ge 1$  a's are processed.  $a^{n+k}b^n$  is also accepted by following the loop again.

Contradiction.

## This idea can be formalized into the pumping lemma ...

... and we will do so.

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

1. w = xyz and  $y \neq e$ .

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2.  $|xy| \leq n_1$ .

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2.  $|xy| \leq n_1$ .
- 3. For all  $i \ge 0$ ,  $xy^iz \in L$ .

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2.  $|xy| \leq n_1$ .
- 3. For all  $i \ge 0$ ,  $xy^iz \in L$ .

## **Proof by picture**

**Pumping Lemma (PL)** If L is regular then there exist  $n_0$  and  $n_1$  such that the following holds:

For all  $w \in L$ ,  $|w| \ge n_0$  there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2.  $|xy| \leq n_1$ .
- 3. For all  $i \ge 0$ ,  $xy^iz \in L$ .

#### **Proof by picture**



We restate it in the way that we use it.

We restate it in the way that we use it.

**PL** If L is reg then for large enough strings w in L there exist x, y, z such that:

We restate it in the way that we use it.

**PL** If L is reg then for large enough strings w in L there exist x, y, z such that:

1. w = xyz and  $y \neq e$ .

We restate it in the way that we use it.

**PL** If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2. |xy| is short.

### How We Use the PL

We restate it in the way that we use it.

**PL** If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2. |*xy*| **is short**.
- 3. for all i,  $xy^iz \in L$ .

### How We Use the PL

We restate it in the way that we use it.

**PL** If L is reg then for large enough strings w in L there exist x, y, z such that:

- 1. w = xyz and  $y \neq e$ .
- 2. |*xy*| **is short**.
- 3. for all i,  $xy^iz \in L$ .

We then find some *i* such that  $xy^iz \notin L$  for the contradiction.

Assume  $L_1$  is regular.

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

1.  $y \neq e$ .

Assume  $L_1$  is regular.

By PL, for long  $a^n b^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.

Assume  $L_1$  is regular.

By PL, for long  $a^n b^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.

$$x = a^{j}, y = a^{k}, z = a^{n-j-k}b^{n}.$$

Assume  $L_1$  is regular.

By PL, for long  $a^n b^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.

$$x = a^j$$
,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ .

Assume  $L_1$  is regular.

By PL, for long  $a^n b^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.

$$x = a^j$$
,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ .

By the PL, all of the words

Assume  $L_1$  is regular.

By PL, for long  $a^n b^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.  $x = a^j$ ,  $v = a^k$ ,  $z = a^{n-j-k}b^n$ . Note k > 1.

By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n}$$

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.  $x = a^j$ ,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ . By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.  $x = a^j$ ,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ . By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in  $L_1$ .

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.  $x = a^j$ ,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ . By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in  $L_1$ .

Take i = 2 to get

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.  $x = a^j$ ,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ . By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in  $L_1$ .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Assume  $L_1$  is regular.

By PL, for long  $a^nb^n \in L_1$ ,  $\exists x, y, z$ :

- 1.  $y \neq e$ .
- 2. |xy| is short.
- 3. For all  $i \geq 0$ ,  $xy^iz \in L_1$ .

Take w long enough so that the xy part only has a's.

 $x = a^j$ ,  $y = a^k$ ,  $z = a^{n-j-k}b^n$ . Note  $k \ge 1$ .

By the PL, all of the words

$$a^{j}\left(a^{k}\right)^{i}a^{n-j-k}b^{n} = a^{n+k(i-1)}b^{n}$$

are in  $L_1$ .

Take i = 2 to get

$$a^{n+k}b^n \in L_1$$

Contradiction since  $k \ge 1$ .



$$L_2 = \{w : \#_a(w) = \#_b(w)\}$$
 is Not Regular

**Proof: Same Proof as**  $L_1$  **not Reg**: Still look at  $a^mb^m$ . **Key** PL says for ALL long enough  $w \in L$ .  $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$  is Not Regular

 $L_3 = \{w : \#_a(w) \neq \#_b(w)\}$  is Not Regular

# Think about.

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

# Think about.

**PL Does Not Help.** When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

# Think about.

**PL Does Not Help.** When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

$$L_3 = \{w : \#_a(w) \neq \#_b(w)\}$$
 is Not Regular

# Think about.

**PL Does Not Help.** When you increase the number of *y*'s there is no way to control it so carefully to make the number of *a*'s EQUAL the number of *b*'s.

So what do to?

If  $L_3$  is regular then  $L_2 = \overline{L_3}$  is regular. But we know that  $L_2$  is not regular. DONE!

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

**Intuition** Perfect squares keep getting further apart.

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

**Intuition** Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

**Proof** 

**Intuition** Perfect squares keep getting further apart. PL says you can always add some constant k to produce a word in the language.

### **Proof**

By PL for long enough  $a^{n^2} \in L_4$  there exist  $x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  with  $xyz = a^{n^2}$ . Also  $a^j(a^k)^i a^\ell \in L_4$ . (Note  $k \ge 1$ .)

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

### **Proof**

By PL for long enough  $a^{n^2} \in L_4$  there exist  $x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  with  $xyz = a^{n^2}$ . Also  $a^j(a^k)^i a^\ell \in L_4$ . (Note  $k \ge 1$ .)

$$(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

#### **Proof**

By PL for long enough  $a^{n^2} \in L_4$  there exist  $x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  with  $xyz = a^{n^2}$ . Also  $a^j(a^k)^i a^\ell \in L_4$ . (Note  $k \ge 1$ .)

$$(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

So  $n^2$ ,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.

$$L_4 = \{a^{n^2} : n \in \mathbb{N}\}$$
 is Not Regular

### **Proof**

By PL for long enough  $a^{n^2} \in L_4$  there exist  $x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  with  $xyz = a^{n^2}$ . Also  $a^j(a^k)^i a^\ell \in L_4$ . (Note  $k \ge 1$ .)

$$(\forall i \geq 0)[j + ik + \ell = n^2 + ik \text{ is a square}].$$

So  $n^2$ ,  $n^2 + k$ ,  $n^2 + 2k$ ,... are all squares. See slide for exciting finish!

So  $n^2$ ,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ . :

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ .  
:  
So  $(\forall i > 1)[n^2 + ik > (n+i)^2 = n^2 + 2in + i^2]$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  
 $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  
 $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ .  
:  
So  $(\forall i \ge 1)[n^2 + ik \ge (n+i)^2 = n^2 + 2in + i^2]$ . So  $(\forall i)[k > 2n + i]$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ .  $n \ge 2n + 2$ . So  $n \ge 2n + 2$ .

So 
$$n^2$$
,  $n^2 + k$ ,  $n^2 + 2k$ , ... are all squares.  $k \ge 1$ .  $n^2 + k \ge (n+1)^2 = n^2 + 2n + 1$ . So  $k \ge 2n + 1$ .  $n^2 + 2k \ge (n+2)^2 = n^2 + 4n + 4$ . So  $k \ge 2n + 2$ .  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 4$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 4$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ . So  $n^2 + 2k \ge (n+2)^2 = n^2 + 2n + 2$ .

**Intuition** Primes keep getting further apart on average.

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language.

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

# Think about.

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

# Think about.

By PL, for large p,  $a^p \in L_5 \exists x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  such that

$$a^{j}(a^{k})^{i}a^{\ell}\in L_{5}$$
  $(\forall i\geq 0)[j+ik+\ell \text{ is prime}].$ 

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

# Think about.

By PL, for large p,  $a^p \in L_5 \exists x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  such that

$$a^j(a^k)^i a^\ell \in L_5$$
  $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$ 

So,  $p, p + k, p + 2k, \dots, p + pk$  are all prime.

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

# Think about.

By PL, for large p,  $a^p \in L_5 \exists x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  such that

$$a^j(a^k)^i a^\ell \in L_5$$
  $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$ 

So, p, p + k, p + 2k, ..., p + pk are all prime. But p + pk = p(k + 1).

**Intuition** Primes keep getting further apart on average. PL says you always add some constant k to produce a word in the language. **Too hard.** Easier proof.

# Think about.

By PL, for large p,  $a^p \in L_5 \exists x = a^j$ ,  $y = a^k$ ,  $z = a^\ell$  such that

$$a^j(a^k)^i a^\ell \in L_5$$
  $(orall i \geq 0)[j+ik+\ell ext{ is prime}].$ 

So, p, p + k, p + 2k, ..., p + pk are all prime. But p + pk = p(k + 1). Contradiction.

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

Take  $w = b^n a^{n+1}$ , long enough so the y-part is in the b's.

$$L_6 = \{\#_a(w) > \#_b(w)\}$$
 is Not Regular

We will be brief here.

Take  $w = b^n a^{n+1}$ , long enough so the y-part is in the b's.

Pump the y to get more b's than a's.

# Think about.

# Think about.

**Problematic** Can take w long and pump a's, but that won't get out of the language.

# Think about.

**Problematic** Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise PL

### Think about.

**Problematic** Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise PL

PL had a bound on |xy|.

### Think about.

**Problematic** Can take *w* long and pump *a*'s, but that won't get out of the language.

So what to do? Revise PL

PL had a bound on |xy|.

Can also bound |yz| by same proof.

### Think about.

**Problematic** Can take w long and pump a's, but that won't get out of the language.

So what to do? Revise PL

PL had a bound on |xy|.

Can also bound |yz| by same proof.

Do that and then you can get y to be all b's, pump b's, and get out of the language.

# Think about.

# Think about.

**Problematic** Neither pumping on the left or on the right works.

### Think about.

**Problematic** Neither pumping on the left or on the right works.

**So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

**Problematic** Neither pumping on the left or on the right works.

**So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

**Problematic** Neither pumping on the left or on the right works.

**So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}$$
,  $y = a^{k}$ ,  $z = a^{n-j-k}b^{n-1}c^{n}$ .

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

**Problematic** Neither pumping on the left or on the right works.

**So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}$$
,  $y = a^{k}$ ,  $z = a^{n-j-k}b^{n-1}c^{n}$ .

For all  $i \geq 0$ ,  $xy^iz \in L_8$ .

$$L_8 = \{a^{n_1}b^mc^{n_2}: n_1, n_2 > m\}$$
 is Not Regular

**Problematic** Neither pumping on the left or on the right works.

**So what to do?** Let's go back to the pumping lemma with a carefully chosen string.

$$w=a^nb^{n-1}c^n.$$

$$x = a^{j}$$
,  $y = a^{k}$ ,  $z = a^{n-j-k}b^{n-1}c^{n}$ .

For all  $i \geq 0$ ,  $xy^iz \in L_8$ .

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$



$$xy^{i}z=a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

$$xy^iz = a^{j+ik+(n-j-k)}b^{n-1}c^n$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

**Key** We are used to thinking of *i* large.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

**Key** We are used to thinking of *i* large.

But we can also take i = 0.

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

**Key** We are used to thinking of i large.

But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

**Key** We are used to thinking of *i* large.

But we can also take i = 0.

cut out that part of the word. We take i=0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

$$xy^{i}z = a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)}b^{n-1}c^n \in L_8$ .

**Key** We are used to thinking of i large.

But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

Since  $k \ge 1$ , we have that  $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$ . Hence  $xy^0z \notin L_8$ .

$$xy^{i}z=a^{j+ik+(n-j-k)}b^{n-1}c^{n}$$

For all  $i xy^i z = a^{j+ik+(n-j-k)} b^{n-1} c^n \in L_8$ .

**Key** We are used to thinking of i large.

But we can also take i = 0.

cut out that part of the word. We take i = 0 to get

$$xy^0z=a^{n-k}b^{n-1}c^n$$

Since  $k \ge 1$ , we have that  $\#_a(xy^0z) < n \le n-1 = \#_b(xy^0z)$ . Hence  $xy^0z \notin L_8$ . Contradiction.

#### i = 0 Case as a Picture



#### Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- 3. Poly-bounded Turing Machines seem to be complicated devices, so proving  $P \neq NP$  seems to be hard.

#### Lower Bounds: Looking Ahead

- 1. DFA's are simple enough devices that we can actually prove languages are not regular
- 2. We will later see that Context Free Grammars are simple enough devices that we can prove Languages are not Context Free.
- 3. Poly-bounded Turing Machines seem to be complicated devices, so proving P≠NP seems to be hard. However, I expect Isaac, Adam, and Sam will work it out by the end of the semester.
- 4. Proving problems undecidable is surprisingly easy since such proofs do not depend on the details of the model of computation.