BILL AND NATHAN RECORD LECTURE!!!!

BILL AND NATHAN RECORD LECTURE!!!

Other Topics I Could

Have Covered And Might Next Spring

May 3, 2024

Other Topics I Could Have Covered And Might Next Spring

Exposition by William Gasarch-U of MD

Steps Forward and Backwards

Complexity theory has its roots in recursion theory.

Steps Forward and Backwards

Complexity theory has its roots in recursion theory.
However, over the last 40 years research in complexity theory has drawn less and less on logic and more and more on combinatorics.

Steps Forward and Backwards

Complexity theory has its roots in recursion theory.
However, over the last 40 years research in complexity theory has drawn less and less on logic and more and more on combinatorics.

A Step Forward means a topic that will help modernize the course. Perhaps any result after 1990.

Steps Forward and Backwards

Complexity theory has its roots in recursion theory.
However, over the last 40 years research in complexity theory has drawn less and less on logic and more and more on combinatorics.
A Step Forward means a topic that will help modernize the course. Perhaps any result after 1990.
A Step Backwards means an old topic, we'll say pre-1980. Logic or more tied to the actual machine model. This is not necc bad.

Topics on Reg Langs

Exposition by William Gasarch-U of MD

How Reg Langs are Really Used

How Reg Langs are Really Used

1. Pattern Matching

How Reg Langs are Really Used

1. Pattern Matching
2. Perl-Regular, Ruby-Regular, etc.

How Reg Langs are Really Used

1. Pattern Matching
2. Perl-Regular, Ruby-Regular, etc.
3. Using DFA's to model systems

How Reg Langs are Really Used

1. Pattern Matching
2. Perl-Regular, Ruby-Regular, etc.
3. Using DFA's to model systems
4. Alg to minimize DFAs

How Reg Langs are Really Used

1. Pattern Matching
2. Perl-Regular, Ruby-Regular, etc.
3. Using DFA's to model systems
4. Alg to minimize DFAs

Verdict Have not done. Perl-Regular might drive me nuts since it does not have a clean mathematical semantics.

Desc of Reg Expressions

Theorems about lower bounds on lengths of Regular Expressions.

Desc of Reg Expressions

Theorems about lower bounds on lengths of Regular Expressions. Verdict Would have to learn those theorems, which I want to. https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

Desc of Reg Expressions

Theorems about lower bounds on lengths of Regular Expressions. Verdict Would have to learn those theorems, which I want to. https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html Goes with the Length of Description theme I've had this year.

Topics on CFL's

Exposition by William Gasarch-U of MD

Applications

Applications

1. PDA's are DFA's with a stack and are use to model compilers.

Applications

1. PDA's are DFA's with a stack and are use to model compilers.
2. Applications of CFG's and PDA's to Compiler design

Applications

1. PDA's are DFA's with a stack and are use to model compilers.
2. Applications of CFG's and PDA's to Compiler design
3. $\mathrm{C}++$ syntax is undecidable

Applications

1. PDA's are DFA's with a stack and are use to model compilers.
2. Applications of CFG's and PDA's to Compiler design
3. $\mathrm{C}++$ syntax is undecidable

Verdict Won't be covering. Too messy.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.
2. $\{w w:|w|=n\}$ requires \exp sized Chomsky Norm Form CFG.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.
2. $\{w w:|w|=n\}$ requires exp sized Chomsky Norm Form CFG.
3. Show that CFGइ* \equiv_{T} INF.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.
2. $\{w w:|w|=n\}$ requires exp sized Chomsky Norm Form CFG.
3. Show that CFG $\Sigma^{*} \equiv_{T}$ INF.
4. Show that the bding funct for CFG-REG is $\equiv{ }_{T}$ INF.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.
2. $\{w w:|w|=n\}$ requires exp sized Chomsky Norm Form CFG.
3. Show that CFG $\Sigma^{*} \equiv_{T}$ INF.
4. Show that the bding funct for CFG-REG is $\equiv{ }_{T}$ INF.

Verdict A Bill-topic. Seems backward looking.

Desc of Langs

All papers on this are here:
https:
//www.cs.umd.edu/users/gasarch/TOPICS/desc/desc.html

1. Deterministic PDA's which play into length of descriptions.
2. $\{w w:|w|=n\}$ requires exp sized Chomsky Norm Form CFG.
3. Show that CFG $\Sigma^{*} \equiv_{T}$ INF.
4. Show that the bding funct for CFG-REG is $\equiv{ }_{T}$ INF.

Verdict A Bill-topic. Seems backward looking.
But goes with the Size of Device theme.

Topics on Complexity Theory

Exposition by William Gasarch-U of MD

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

1. From the Graph Minor Theorem one obtains MANY problems in P. RESPECT

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

1. From the Graph Minor Theorem one obtains MANY problems in P. RESPECT
2. Hall's Matching Theorem leads to a particular SAT-type problem being in P. RESPECT

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

1. From the Graph Minor Theorem one obtains MANY problems in P. RESPECT
2. Hall's Matching Theorem leads to a particular SAT-type problem being in P. RESPECT
3. SAT Solvers- while not in P, do surprisingly well. RESPECT

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

1. From the Graph Minor Theorem one obtains MANY problems in P. RESPECT
2. Hall's Matching Theorem leads to a particular SAT-type problem being in P. RESPECT
3. SAT Solvers- while not in P, do surprisingly well. RESPECT

Verdict I should write a parody of Aretha Franklin's song RESPECT with this theme.

More RESPECT

Recall RESPECT is shorthand for Lower Bounds are Hard because you never know when someone will come along with clever math or deep math or SOMETHING that your so-called lower bound did not take into account.

1. From the Graph Minor Theorem one obtains MANY problems in P. RESPECT
2. Hall's Matching Theorem leads to a particular SAT-type problem being in P. RESPECT
3. SAT Solvers- while not in P, do surprisingly well. RESPECT

Verdict I should write a parody of Aretha Franklin's song RESPECT with this theme.
Also, would be happy to do any of these topics.

SEND+MORE=MONEY

	S	E	N	D
+	M	O	R	E
M	O	N	E	Y

SEND+MORE=MONEY

	S	E	N	D
+	M	O	R	E
M	O	N	E	Y

Has Solution

$$
\begin{array}{r}
95667 \\
+\quad 10085 \\
\hline 1
\end{array} \quad 06522 .
$$

SEND+MORE=MONEY

	S	E	N	D
+	M	O	R	E
M	O	N	E	Y

Has Solution

Given a puzzle, does it have a solution, is NP-complete

SEND+MORE=MONEY

	S	E	N	D
+	M	O	R	E
M	O	N	E	Y

Has Solution

Given a puzzle, does it have a solution, is NP-complete Verdict Not sure. Good to see one hard reduction. Too hard?

Other Problems that are Hard

Other Problems that are Hard

1. CHESS is EXPTIME-complete

Other Problems that are Hard

1. CHESS is EXPTIME-complete
2. GO is EXPTIME-complete

Other Problems that are Hard

1. CHESS is EXPTIME-complete
2. GO is EXPTIME-complete
3. Equiv of trex is EXPSPACE-complete

Other Problems that are Hard

1. CHESS is EXPTIME-complete
2. GO is EXPTIME-complete
3. Equiv of trex is EXPSPACE-complete
4. Powerpoint and LaTeX are undecidable.

Other Problems that are Hard

1. CHESS is EXPTIME-complete
2. GO is EXPTIME-complete
3. Equiv of trex is EXPSPACE-complete
4. Powerpoint and LaTeX are undecidable.

Verdict Interesting Results but Messy Proofs.

Other Problems that are Hard

1. CHESS is EXPTIME-complete
2. GO is EXPTIME-complete
3. Equiv of trex is EXPSPACE-complete
4. Powerpoint and LaTeX are undecidable.

Verdict Interesting Results but Messy Proofs.
Perhaps should define EXPTIME-complete so can STATE these results.

Lower Bounds on Approx

Thm If there is an algorithm that, given an instance of TSP, outputs a cycle that is $\leq 10 \mathrm{OPT}$, then $\mathrm{P}=\mathrm{NP}$.

Lower Bounds on Approx

Thm If there is an algorithm that, given an instance of TSP, outputs a cycle that is $\leq 10 \mathrm{OPT}$, then $\mathrm{P}=\mathrm{NP}$. (can replace 10 with any constant).

Lower Bounds on Approx

Thm If there is an algorithm that, given an instance of TSP, outputs a cycle that is $\leq 10 \mathrm{OPT}$, then $\mathrm{P}=\mathrm{NP}$.
(can replace 10 with any constant).
Verdict Meant to do that one this year but forgot. Oh well. Will do it next year.
Caveat There are other similar results I could look into.

Why we think GI is Not NPC

Thm If GI is NPC then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

Why we think GI is Not NPC

Thm If GI is NPC then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

1. Involves some probability

Why we think GI is Not NPC

Thm If GI is NPC then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

1. Involves some probability
2. Would take 2 or 3 lectures.

Why we think GI is Not NPC

Thm If GI is NPC then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

1. Involves some probability
2. Would take 2 or 3 lectures.
3. Is very interesting.

Why we think GI is Not NPC

Thm If GI is NPC then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

1. Involves some probability
2. Would take 2 or 3 lectures.
3. Is very interesting.

Verdict A Step Forward! Might be to hard.

Sparse Sets

Def A set A is sparse if \exists poly $p,\left|A \cap \Sigma^{n}\right| \leq p(n)$.

Sparse Sets

Def A set A is sparse if \exists poly $p,\left|A \cap \Sigma^{n}\right| \leq p(n)$.

1. Thm If a sparse set is NP-complete then $\mathrm{P}=\mathrm{NP}$.

Sparse Sets

Def A set A is sparse if \exists poly $p,\left|A \cap \Sigma^{n}\right| \leq p(n)$.

1. Thm If a sparse set is NP-complete then $\mathrm{P}=\mathrm{NP}$.
2. Thm If a sparse set is NP-hard under poly-Turing reductions then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.
Verdict I have done the first one before. Could do the second. A tiny step backwards.

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?
BILL: Darling, do you find the following result interesting: there is a set A such that $A \notin \operatorname{DTIME}(\operatorname{ACK}(n))$.

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?
BILL: Darling, do you find the following result interesting: there is a set A such that $A \notin \operatorname{DTIME}(\operatorname{ACK}(n))$.
DARLING: Yes I would care unless-

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?
BILL: Darling, do you find the following result interesting: there is a set A such that $A \notin \operatorname{DTIME}(\operatorname{ACK}(n))$.
DARLING: Yes I would care unless-
BILL: (cuts her off) Great!. Oh, unless what?

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?
BILL: Darling, do you find the following result interesting: there is a set A such that $A \notin \operatorname{DTIME}(\operatorname{ACK}(n))$.
DARLING: Yes I would care unless-
BILL: (cuts her off) Great!. Oh, unless what?
DARLING: Unless its one of those dumb-ass set that people like you construct for the sole purpose of having that property.

There Exists Decidable Sets that are Hard

Thm There exists a decidable set A such that $A \notin \operatorname{DTIME}(A C K(n))$.
(Can replace $\operatorname{ACK}(n)$ with any computable function.)
Does my Darling care?
BILL: Darling, do you find the following result interesting: there is a set A such that $A \notin \operatorname{DTIME}(\operatorname{ACK}(n))$.
DARLING: Yes I would care unless-
BILL: (cuts her off) Great!. Oh, unless what?
DARLING: Unless its one of those dumb-ass set that people like you construct for the sole purpose of having that property.
BILL: You nailed it!

Theorems from Space Complexity

1. Nondet-Log-Space is closed under complement. Good for Respect theme.

Theorems from Space Complexity

1. Nondet-Log-Space is closed under complement. Good for Respect theme.
2. Nondet-Log-Space is contained in P. Good for Respect theme.

Theorems from Space Complexity

1. Nondet-Log-Space is closed under complement. Good for Respect theme.
2. Nondet-Log-Space is contained in P. Good for Respect theme.
3. $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{DSPACE}\left(S(n)^{2}\right)$.

Theorems from Space Complexity

1. Nondet-Log-Space is closed under complement. Good for Respect theme.
2. Nondet-Log-Space is contained in P. Good for Respect theme.
3. $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{DSPACE}\left(S(n)^{2}\right)$.

Verdict All nice theorems that I could do. Would need to introduce and talk about space complexity so this would take time. Not that hard, so thats good.

Decidable and Undecidable

Exposition by William Gasarch-U of MD

Decidable Theories

Decidable Theories

1. Presburger Arithmetic is decidable: just $<$ and + over \mathbb{N}.

Decidable Theories

1. Presburger Arithmetic is decidable: just $<$ and + over \mathbb{N}.
2. Theory of the reals is decidable!

Decidable Theories

1. Presburger Arithmetic is decidable: just $<$ and + over \mathbb{N}.
2. Theory of the reals is decidable!

Verdict A step Backwards.

Arithmetic Hierarchy

Actually prove that (say)
INF $=\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$ is NOT in Σ_{2}.

Arithmetic Hierarchy

Actually prove that (say)
$\mathrm{INF}=\left\{e: M_{e}\right.$ halts on an infinite number of numbers $\}$
is NOT in Σ_{2}.
Verdict Too much background and a step backwards.

Intermediary Sets

Are there sets that are both

Intermediary Sets

Are there sets that are both

1. Not decidable

Intermediary Sets

Are there sets that are both

1. Not decidable
2. Weaker than HALT.

Intermediary Sets

Are there sets that are both

1. Not decidable
2. Weaker than HALT.

Answer: YES and the proof is interesting but hard.

Intermediary Sets

Are there sets that are both

1. Not decidable
2. Weaker than HALT.

Answer: YES and the proof is interesting but hard.
Verdict A step backwards but a very interesting proof.

More Kolmogorov

I could apply Kolm Complexity to

More Kolmogorov

I could apply Kolm Complexity to

1. Proving more langs not regular.

More Kolmogorov

I could apply Kolm Complexity to

1. Proving more langs not regular.
2. Proving some langs have large DFAs, NFAs, CFGs.

More Kolmogorov

I could apply Kolm Complexity to

1. Proving more langs not regular.
2. Proving some langs have large DFAs, NFAs, CFGs.
3. Getting Avg Case Analysis of some algorithms.

Misc

Exposition by William Gasarch-U of MD

Parallel, Randomized, Quantum

There are other modes of computation.

Parallel, Randomized, Quantum

There are other modes of computation.

1. Parallelism There is a theory analogous to P vs NP to show problems can't be parallelized.

Parallel, Randomized, Quantum

There are other modes of computation.

1. Parallelism There is a theory analogous to P vs NP to show problems can't be parallelized.
2. Randomized Computations How much does randomization help?

Parallel, Randomized, Quantum

There are other modes of computation.

1. Parallelism There is a theory analogous to P vs NP to show problems can't be parallelized.
2. Randomized Computations How much does randomization help?
3. Quantum Computing there is a notion of quantum-DFA that I could look into and do, but might be too hard. For me!

Parallel, Randomized, Quantum

There are other modes of computation.

1. Parallelism There is a theory analogous to P vs NP to show problems can't be parallelized.
2. Randomized Computations How much does randomization help?
3. Quantum Computing there is a notion of quantum-DFA that I could look into and do, but might be too hard. For me!
Verdict I would have to look into all of these more to see if they make sense. Quantum would be a step forward.

Complexity Classes Based on Problems

Complexity Classes Based on Problems

1. All-pairs-shortest-path seems to require $\Omega\left(n^{2}\right)$ time. There are now APSP-hard problems.

Complexity Classes Based on Problems

1. All-pairs-shortest-path seems to require $\Omega\left(n^{2}\right)$ time. There are now APSP-hard problems.
2. There are others problems that are thought to be hard that are used to show that other problems are thought to be hard.

What to take Out (Brief)

Exposition by William Gasarch-U of MD

What to Take Out?

If I want to put any of that in, I need to take some stuff out.

What to Take Out?

If I want to put any of that in, I need to take some stuff out.

1. CSL's I could easily take out. :-)

What to Take Out?

If I want to put any of that in, I need to take some stuff out.

1. CSL's I could easily take out. :-)
2. Decidability of $(\mathbb{Q},<)$ can go.

What to Take Out?

If I want to put any of that in, I need to take some stuff out.

1. CSL's I could easily take out. :-)
2. Decidability of $(\mathbb{Q},<)$ can go.
3. Could reduce how much time I spend on regular by cutting out Regular Expressions. They are done in 330 anyway. DO want to keep the SMALL-NFA-RESPECT problem.

BILL AND NATHAN RECORD LECTURE!!!!

BILL AND NATHAN RECORD LECTURE!!!

