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Our Goals for Complexity Theory

We want to prove that

1. Some languages L have a fast program to decide them

2. (Spoiler Alert: L ∈ P.)

3. Some languages L unlikely to have a fast program to
decide them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.
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Variants of SAT

We define several variants of SAT:

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE .

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
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Sample Problems

How hard are the following problems:

1. HAM Given a graph G does it have a Ham Cycle?
(A cycle that has every vertex exactly once.)

2. EUL Given a graph G does it have a Euler Cycle?
(A cycle that has every edge exactly once.)

3. CLIQ Given G and k , is there a set of k vertices that all know
each other?

To even ask these questions we need (1) a standard way to
describe sets and a (2) model of computation.
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Representing Elements of Sets

All elements (graphs, formulas, pairs of graphs and numbers) are
represented by binary strings.

1. A graph is represented by an adjacency matrix. An n-node
graph is an n2-long string.

2. A set of graphs (like HAMC) is a set of strings, all of square
length, all interpreted as a n adjacency matrix for a graph.

3. A formula is represented by coding We are busy people!Not
getting into details of coding a fml into a string. HW?

4. A set of formulas is a set of strings, all of which are
interpreted as formulas.

5. An ordered pair of Graph,Number: Use 00 for 0, 11 for 1,
and 01 for a separator. The number you can code in usual
binary.

6. A set of ordered pairs: Graphs and Numbers . . ..
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Length of the Input

Def The length of an input is simply the length of the string that
represents it.

We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.



Length of the Input

Def The length of an input is simply the length of the string that
represents it.
We Sometimes Cheat We may take the length of a formula to be
the number of vars. We may take the length of a graph to be the
number of vertices. These notions of length are poly-related to the
actual length and hence is fine for our purposes.



Turing Machines Def

Def A Turing Machine is a tuple (Q,Σ, δ, s, h) where

We are busy people!

We are not going to bother defining Turing Machines Until
we Need to!

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.
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Time Classes

If we want to solve (say) HAMC we expect that the more vertices
in the graph, the longer it will take. We want to measure how fast
the time increases.

Def Let T (n) be a computable function (think increasing). Let A
be a set of strings. A is in DTIME(T (n)) if there is a Turing
Machine M such that

1. If x ∈ A then M(x) will halt and output 1.

2. If x /∈ A then M(x) will halt and output 0.

3. The computation M(x) will halt in ≤ T (|x |) steps.
What do you think of this definition? Discuss.

Its Terrible!
The definition depends on the details of the Turing Machine
definition. This should not be what we care about.

So what to do?
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How to use DTIME

So what do so with such a terrible definition?

▶ Prove theorems about DTIME(T (n)) where the model does
not matter. I might do this later in the course.

▶ Define time classes where the model does not matter.
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Models of Computation

There are many models of computation.

1. Turing Machines (they look like DFA’s with more stuff).

2. Generalized Grammars (they look like CFG’s with more stuff).

3. Variants of the two above.

4. Others

Fact If A is in DTIME(T (n)) on a Turing Machine then A can be
computed by a generalized grammar in time DTIME((T (n))5).
(I made that up, but something like it is true.)
Fact For any two commonly used models of comp, they are
equivalent within poly time.
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Why Polynomial Time? Reason I

Consider 3SAT.

1. 3SAT ∈ EXP, time 2n, by brute force.

2. If I came up with a (1.618)n algorithm that’s just brute force
with some tricks. (There is such an algorithm.)

3. If I came up with an n1000 algorithm then it’s NOT brute
force. I would have found something very clever. Not
practical, but that cleverness can probably be exploited to get
a practical algorithm.
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Why Polynomial Time? Reason II

A contrast to quadratic time.

1. Quadratic Time. Different models of comp yield diff notions.

2. P. Different models of comp yield same P.

3. Quadratic time not closed under composition: if f (n), g(n)
are quadratic then f (g(n)) is quartic, not quadratic.

4. P is closed under composition: if f (n), g(n) are poly then
f (g(n)) is poly.
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3SAT,HAM,EUL,CLIQ, 3COL All Walk into a Bar

We rewrite 3SAT, HAM, EUL.

3SAT = {ϕ : (∃b⃗)[ϕ(b⃗) = T ]}

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.
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We rewrite CLIQ, 3COL.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

3COL = {G : there is a 3-coloring ρ of G }.

(ρ assigns R,W,B to the vertices, no two adjacent verts have same
color.)

Why is this interesting?
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We Look At CLIQ

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

If (G , k) ∈ CLIQ then the (v1, . . . , vk) is a witness of this.
Note (v1, . . . , vk) is short: length is poly in the length of (G , k).

Note Verifying a witness is fast:
If (v1, . . . , vk) is a potential witness then verifying that
(v1, . . . , vk) is a witness is fast: time poly in the length of (G , k).

3SAT, HAM, EUL are similar.
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NP

Def A is in NP if there exists a set B ∈ P and a polynomial p such
that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

▶ If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

▶ If x /∈ A then there is NO proof that x ∈ A.

Note 3SAT, HAM, EUL, CLIQ are all in NP.
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Our Plan for NP

3SAT, HAM, EUL, CLIQ are all in NP.

1. This does not mean that any of these problems are easy.

2. This does not mean that any of these problems are hard.

3. 3SAT, HAM, CLIQ (but NOT EUL) are equivalent and
hence one of the following holds:
▶ 3SAT, HAM, CLIQ are all in P.
▶ None of 3SAT, HAM, CLIQ are in P.
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Ind Set

We will do an example with another problem.
Def Let G be a graph. An Ind Set is a set of vertices, no pair of
which has an edge between the two of them.

IS = {(G , k) : G has an Ind Set of size k }.
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If IS ∈ P then 3SAT ∈ P: Plan

We will give an algorithm that does the following:

1. Input ϕ, a formula in 3-CNF form.

2. Output (G , k) such that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

3. The algorithm runs in time p(|ϕ|) (p is a poly).

4. Produces (G , k) where |(G , k)| ≤ q(|ϕ|) (q is a poly).

Call this algorithm ALG. On next slide we use ALG to show that
IS ∈ P implies 3SAT ∈ P.
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If IS ∈ P then 3SAT ∈ P: Plan

Assume IS ∈ P via program M which runs in r(|(G , k)|).

1. Input ϕ, a formula in 3-CNF form of length L.

2. Compute ALG on ϕ to get (G , k). Takes time p(|ϕ|) and
produces (G , k) where |(G , k)| ≤ q(|ϕ|).

3. Run M on (G , k) (takes time r(q(|ϕ|))). Recall that

ϕ ∈ 3SAT iff (G , k) ∈ IS.

So just output the output of M(G , k).

This is an algorithm for 3SAT that takes time

p(|ϕ|) + r(q(|ϕ|))
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How We Present ALG

On the next slide we just show what ALG does on

(x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)

From that one example and my verbiage you will be able to write
down a general algorithm.
HW? No.
Your Programming Project! Not this semester.
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Reductions

We now generalize what we did for 3SAT and CLIQ.

Def Let X ,Y be sets. A reduction from X to Y is a
polynomial-time computable function f such that

x ∈ X iff f (x) ∈ Y .

(Example: Our function that took ϕ to (G , k).)
We express this by writing X ≤ Y .

Reductions are transitive.
Lemma (HW) If X ≤ Y and Y ∈ P then X ∈ P. (We use that if
f (n), g(n) are poly then f (g(n)) is poly.)

Contrapositive If X ≤ Y and X /∈ P then Y /∈ P.
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Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

▶ Y ∈ NP

▶ If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Honesty When I first saw the definition of NP-completeness I
thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.

The condition:
for EVERY X ∈ NP, X ≤ Y

seemed very hard to meet.
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SAT is NP-Complete

Cook (1971) and Levin (1973) independently showed:
CNF-SAT is NP-complete

Thoughts on this:

1. The proof is not hard, but it involves looking at actual Turing
Machines. SAT is the first NP-complete problem. You could
not use some other problem. 3SAT was the second by an easy
reduction.

2. Once we have 3SAT is NP-complete we will NEVER use
Turing machines again. To show Y NPC: (1) Y ∈ NP, (2)
A ≤ Y for a known A that is NPC, often 3SAT.

3. Thousands of problems are NP-complete. If any are in P then
they are all in P.

4. Most Computer Scientists and Mathematicians think P ̸= NP.
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History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).
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SAT,HAM,CLIQ, 3COL Walk into a Bar

1. SAT is NP-complete by Cook-Levin Theorem.

2. CLIQ is NP-complete. We proved this by showing
3SAT ≤ CLIQ.

3. 3COL is NP-complete. We may prove this later.

4. HAM is NP-complete. Just take my word for it.
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So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.



So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.



So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.



So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.



So What Do We Know?

1. We do not know that 3SAT /∈ P.

2. We do not know that CLIQ /∈ P.

3. We do know that 3SAT ∈ P IFF CLIQ ∈ P.

4. We believe 3SAT /∈ P, hence we believe CLIQ /∈ P.



Why Do We Believe P ̸= NP?

1. The NP-complete problems have been worked on for a long
time (many predating the definition of P and NP) and none
have been shown to be in P.

2. Intuitively coming up with a proof seems harder than
verifying a proof.

3. P ̸= NP has great explanatory power. See next slide.
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Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P ̸= NP,
for all ϵ there is no (1− ϵ) ln n ×OPTIMAL approx alg for
Set Cover.

3. These two proofs have nothing to do with each other yet give
matching upper and lower bounds.

4. There are many other approx problems where P ̸= NP
explains why they cannot be improved.
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My Opinions

My opinions

1. 1.1 IF P = NP that might be proven in the next decade.
1.2 IF P ̸= NP this will not be proven until the year 2525.

2. P ̸= NP. In fact, SAT requires 2Ω(n) time.
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What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.
First I’ll poll you, then I’ll show you what the polls said.
Poll of 452 students: Do you think P ̸= NP?

P ̸=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0



What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.

First I’ll poll you, then I’ll show you what the polls said.
Poll of 452 students: Do you think P ̸= NP?

P ̸=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0



What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.
First I’ll poll you, then I’ll show you what the polls said.

Poll of 452 students: Do you think P ̸= NP?
P ̸=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0



What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.
First I’ll poll you, then I’ll show you what the polls said.
Poll of 452 students: Do you think P ̸= NP?

P ̸=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0



What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.
First I’ll poll you, then I’ll show you what the polls said.
Poll of 452 students: Do you think P ̸= NP?

P ̸=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0



BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!


