
Primitive Recursive Functions

Exposition by William Gasarch-U of MD



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y

f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :

f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :

f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).

f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?

f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss

Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)

x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)

f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor

f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition

f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication

f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp

f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)

f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)

f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



Levels

Def PRa is the set of PR functions that can be defined with ≤ a
uses of the Recursion rule.

Note One can show that any finite number of exponentials is in
PR3.



Levels

Def PRa is the set of PR functions that can be defined with ≤ a
uses of the Recursion rule.

Note One can show that any finite number of exponentials is in
PR3.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



A Natural non PR Function

Def Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A Natural non PR Function

Def Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A Natural non PR Function

Def Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A Natural non PR Function

Def Ackermann’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



Ackermann’s Function is Natural: Security

https:

//www.ackermansecurity.com/blog/home-security-tips/

5-ways-home-security-signs-prevent-burglaries

They are called Ackerman Security since they claim that Burglar
would have to be Ackerman(n)-good to break in.

https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries
https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries
https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries


Ackermann’s Function is Natural: Security

https:

//www.ackermansecurity.com/blog/home-security-tips/

5-ways-home-security-signs-prevent-burglaries

They are called Ackerman Security since they claim that Burglar
would have to be Ackerman(n)-good to break in.

https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries
https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries
https://www.ackermansecurity.com/blog/home-security-tips/5-ways-home-security-signs-prevent-burglaries


Ackermann’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:

(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

▶ There is a DS for this problem that can do n operations in
nA−1(n) steps.

▶ One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackermann’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.

(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

▶ There is a DS for this problem that can do n operations in
nA−1(n) steps.

▶ One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackermann’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.

(3) Given x find which, if any, set it is in.

▶ There is a DS for this problem that can do n operations in
nA−1(n) steps.

▶ One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackermann’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

▶ There is a DS for this problem that can do n operations in
nA−1(n) steps.

▶ One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackermann’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

▶ There is a DS for this problem that can do n operations in
nA−1(n) steps.

▶ One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackermann’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackermann’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackermann’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackermann’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackermann’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
▶ Goto infinity (and if so how fast- perhaps Ack-like?)
▶ Eventually stabilizes (e.g., goes to 18 and then stops there)
▶ Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackermann’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
▶ Goto infinity (and if so how fast- perhaps Ack-like?)
▶ Eventually stabilizes (e.g., goes to 18 and then stops there)
▶ Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackermann’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .

Vote Does the sequence:
▶ Goto infinity (and if so how fast- perhaps Ack-like?)
▶ Eventually stabilizes (e.g., goes to 18 and then stops there)
▶ Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackermann’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
▶ Goto infinity (and if so how fast- perhaps Ack-like?)
▶ Eventually stabilizes (e.g., goes to 18 and then stops there)
▶ Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackermann’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
▶ Goto infinity (and if so how fast- perhaps Ack-like?)
▶ Eventually stabilizes (e.g., goes to 18 and then stops there)
▶ Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.



Upshot

1. The PR functions give us levels to measure how fast functions
grow.

2. Almost all functions from Nk to N encountered in
mathematics are PR.

3. Ackermann’s function is computable and not PR.

4. Ackerman’s function grows faster than any PR function.

5. If we want to indicate that a function grows really fast we
may compare it to Ackermann’s function.


