Regular Expressions

Recognizers vs Generators

Recognizers vs Generators

We want to write expressions that generate strings.

Regular Expressions over Σ

All the cool kids call them regex.
Def

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every $\sigma \in \Sigma$ is a regex.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every $\sigma \in \Sigma$ is a regex.
2. If α and β are regex then $\alpha \cup \beta$ and $\alpha \beta$ are regex.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every $\sigma \in \Sigma$ is a regex.
2. If α and β are regex then $\alpha \cup \beta$ and $\alpha \beta$ are regex.
3. If α is a regex then α^{*} is a regex.

Regular Expressions over Σ

All the cool kids call them regex.
Def

1. e is a regex. Every $\sigma \in \Sigma$ is a regex.
2. If α and β are regex then $\alpha \cup \beta$ and $\alpha \beta$ are regex.
3. If α is a regex then α^{*} is a regex.

Need to give examples and assign meaning.

Example and Meaning

A regex represents a set

Example and Meaning

A regex represents a set
a is a regex. It represents $\{a\}$.

Example and Meaning

A regex represents a set
a is a regex. It represents $\{a\}$.
a^{*} is a regex. It represents $\{e, a, a a, a a a, \ldots\}$.

Example and Meaning

A regex represents a set
a is a regex. It represents $\{a\}$.
a^{*} is a regex. It represents $\{e, a, a a, a a a, \ldots\}$.
$a^{*} b$ is a regex. It represents $\{b, a b, a a b, a a a b, \ldots\}$.

Example and Meaning

A regex represents a set
a is a regex. It represents $\{a\}$.
a^{*} is a regex. It represents $\{e, a, a a, a a a, \ldots\}$.
$a^{*} b$ is a regex. It represents $\{b, a b, a a b, a a a b, \ldots\}$.
$a^{*} b \cup b^{*}$ is a regex. You can guess what it represents.

Example and Meaning

A regex represents a set
a is a regex. It represents $\{a\}$.
a^{*} is a regex. It represents $\{e, a, a a, a a a, \ldots\}$.
$a^{*} b$ is a regex. It represents $\{b, a b, a a b, a a a b, \ldots\}$.
$a^{*} b \cup b^{*}$ is a regex. You can guess what it represents.
Def If α is a regex then $L(\alpha)$ is the set of strings it generates.

Examples

1. $b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}$
2. $b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}$
3. $\left(b^{*}\left(a b^{*} a b^{*}\right)^{*} a b^{*}\right) \cup\left(b^{*}\left(a b^{*} a b^{*} a b^{*}\right)^{*}\right)$

How is Regex related to Regular？

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf
We know: DFA are equivalent to NFA.

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf
We know: DFA are equivalent to NFA.
Will show:

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf
We know: DFA are equivalent to NFA.
Will show:
Lemma If a language is generated by a regular expression, it is recognized by an NFA.

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf
We know: DFA are equivalent to NFA.
Will show:
Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Lemma If a language is recognized by a DFA, it is generated by a regular expression.

How is Regex related to Regular?

Thm A language generated by a regular expression if and only if it is is recognized by a finite automaton.

Pf
We know: DFA are equivalent to NFA.
Will show:
Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Lemma If a language is recognized by a DFA, it is generated by a regular expression.
QED

Lemma If a language is generated by a regular expression, it is recognized by an NFA.

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Lemma If a language is generated by a regular expression, it is recognized by an NFA.
Pf By strong induction on the length of α.
Base Cases $|\alpha|=1$. Then $\alpha=e$ or $\alpha=\sigma$.

Rest of the proof on next slide.

IH $n \geq 2$. For all $\beta,|\beta|<n$, there is a NFA for β.

IH $n \geq 2$. For all $\beta,|\beta|<n$, there is a NFA for β.
IS Let α be a regex of length n.

IH $n \geq 2$. For all $\beta,|\beta|<n$, there is a NFA for β.
IS Let α be a regex of length n.
Case $1 \alpha=\alpha_{1} \cup \alpha_{2}$. Since $\left|\alpha_{1}\right|<n,\left|\alpha_{2}\right|<n$, apply IH: NFA's N_{i} for α_{i}. Use closure of NFAs under union to get NFA for $L\left(N_{1}\right) \cup L\left(N_{2}\right)$. This is NFA for $L(\alpha)$.

IH $n \geq 2$. For all $\beta,|\beta|<n$, there is a NFA for β.
IS Let α be a regex of length n.
Case $1 \alpha=\alpha_{1} \cup \alpha_{2}$. Since $\left|\alpha_{1}\right|<n,\left|\alpha_{2}\right|<n$, apply IH: NFA's N_{i} for α_{i}. Use closure of NFAs under union to get NFA for $L\left(N_{1}\right) \cup L\left(N_{2}\right)$. This is NFA for $L(\alpha)$.
Case $2 \alpha=\alpha_{1} \cdot \alpha_{2}$. Similar. Use closure under concatenation.

IH $n \geq 2$. For all $\beta,|\beta|<n$, there is a NFA for β.
IS Let α be a regex of length n.
Case $1 \alpha=\alpha_{1} \cup \alpha_{2}$. Since $\left|\alpha_{1}\right|<n,\left|\alpha_{2}\right|<n$, apply IH: NFA's N_{i} for α_{i}. Use closure of NFAs under union to get NFA for $L\left(N_{1}\right) \cup L\left(N_{2}\right)$. This is NFA for $L(\alpha)$.
Case $2 \alpha=\alpha_{1} \cdot \alpha_{2}$. Similar. Use closure under concatenation.
Case $3 \alpha=\alpha_{1}^{*}$. Similar. Use closure under Kleene *.

How Does Size of NFA and Regex Compare

If α was of length n then the NFA you get for it has $\leq 2 n$ states.

Lemma If a language is recognized by a DFA, it is generated by a regular expression.

Lemma If a language is recognized by a DFA, it is generated by a regular expression.
Pf Assume DFA has start state s and final states f_{1}, \ldots, f_{m}.

Lemma If a language is recognized by a DFA, it is generated by a regular expression.
Pf Assume DFA has start state s and final states f_{1}, \ldots, f_{m}. For each f_{i}, we will produce a regex, $E\left(s, f_{i}\right)$, that generates all words recognized by starting in s and ending in final state f_{i}.

Lemma If a language is recognized by a DFA, it is generated by a regular expression.
Pf Assume DFA has start state s and final states f_{1}, \ldots, f_{m}. For each f_{i}, we will produce a regex, $E\left(s, f_{i}\right)$, that generates all words recognized by starting in s and ending in final state f_{i}. Then the desired regex is

$$
E\left(s, f_{1}\right) \cup E\left(s, f_{2}\right) \cup \cdots \cup E\left(s, f_{m}\right)
$$

Notation: $\delta(q, w)$

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we note that

$$
\delta: Q \times \Sigma \rightarrow Q .
$$

Notation: $\delta(q, w)$

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we note that

$$
\delta: Q \times \Sigma \rightarrow Q .
$$

We can extend δ to strings

$$
\delta: Q \times \Sigma^{*} \rightarrow Q .
$$

Notation: $\delta(q, w)$

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we note that

$$
\delta: Q \times \Sigma \rightarrow Q .
$$

We can extend δ to strings

$$
\delta: Q \times \Sigma^{*} \rightarrow Q .
$$

$\delta(q, w)=$ State that M is in if start at q and feed in w

Notation: $\delta(q, w)$

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we note that

$$
\delta: Q \times \Sigma \rightarrow Q .
$$

We can extend δ to strings

$$
\delta: Q \times \Sigma^{*} \rightarrow Q .
$$

$\delta(q, w)=$ State that M is in if start at q and feed in w
What about the empty string?

Notation: $\delta(q, w)$

Given a DFA $M=(Q, \Sigma, \delta, s, F)$ we note that

$$
\delta: Q \times \Sigma \rightarrow Q .
$$

We can extend δ to strings

$$
\delta: Q \times \Sigma^{*} \rightarrow Q .
$$

$\delta(q, w)=$ State that M is in if start at q and feed in w
What about the empty string?

$$
\delta(q, e)=q .
$$

$\mathrm{DFA} \subseteq$ REGEX

Given a DFA M we want a Regex for $L(M)$.

$\mathrm{DFA} \subseteq$ REGEX

Given a DFA M we want a Regex for $L(M)$.
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.

$\mathrm{DFA} \subseteq$ REGEX

Given a DFA M we want a Regex for $L(M)$.
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j. Why? That seems like way more than we need.

DFA \subseteq REGEX

Given a DFA M we want a Regex for $L(M)$.
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j. Why? That seems like way more than we need.
Dynamic Programming We will use all of this information to get our final answer.

Definition of $R(i, j, k)$

Will assume M has state set $\{1, \ldots, n\}$.
I wrote on the last slide:

Definition of $R(i, j, k)$

Will assume M has state set $\{1, \ldots, n\}$.
I wrote on the last slide:
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.

Definition of $R(i, j, k)$

Will assume M has state set $\{1, \ldots, n\}$.
I wrote on the last slide:
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.
Actually we will find out a lot more information.
Will assume M has state set $\{1, \ldots, n\}$.

Definition of $R(i, j, k)$

Will assume M has state set $\{1, \ldots, n\}$.
I wrote on the last slide:
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.
Actually we will find out a lot more information.
Will assume M has state set $\{1, \ldots, n\}$.
$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.

Definition of $R(i, j, k)$

Will assume M has state set $\{1, \ldots, n\}$.
I wrote on the last slide:
Key We will find, for every pair of states (i, j) the regex that represents strings that take you from state i to state j.
Actually we will find out a lot more information.
Will assume M has state set $\{1, \ldots, n\}$.
$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.
For all $1 \leq i, j \leq n 0 \leq k \leq n$, we will find a regex for $R(i, j, k)$.

Finding Regex for $R(i, j, k)$

$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.

Finding Regex for $R(i, j, k)$

$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.
We will first find Regex for $R(i, j, 0)$ for all $1 \leq i, j \leq n$.

Finding Regex for $R(i, j, k)$

$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.
We will first find Regex for $R(i, j, 0)$ for all $1 \leq i, j \leq n$.
What is $R(i, j, 0)$?
If a string goes from i to j with no intermediary states then it must just be a transition.

Finding Regex for $R(i, j, k)$

$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.
We will first find Regex for $R(i, j, 0)$ for all $1 \leq i, j \leq n$.
What is $R(i, j, 0)$?
If a string goes from i to j with no intermediary states then it must just be a transition.
Or $i=j$ and the string that is e.

Finding Regex for $R(i, j, k)$

$R(i, j, k)=\{w: \delta(i, w)=j$ but only use states in $\{1, \ldots, k\}\}$.
We will first find Regex for $R(i, j, 0)$ for all $1 \leq i, j \leq n$.
What is $R(i, j, 0)$?
If a string goes from i to j with no intermediary states then it must just be a transition.
Or $i=j$ and the string that is e.

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{1}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

$R(i, j, 0)$ is a Regex. Inductive Step

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

$R(i, j, 0)$ is a Regex. Inductive Step

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

In both cases $R(i, j, 0)$ can be expressed as a Regex.

$R(i, j, 0)$ is a Regex. Inductive Step

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

In both cases $R(i, j, 0)$ can be expressed as a Regex.
We will now assume that for all $1 \leq i, j \leq n, R(i, j, k-1)$ is a Regex and prove that for all $1 \leq i, j \leq n, R(i, j, k)$ is a Regex.

$R(i, j, 0)$ is a Regex. Inductive Step

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

In both cases $R(i, j, 0)$ can be expressed as a Regex.
We will now assume that for all $1 \leq i, j \leq n, R(i, j, k-1)$ is a Regex and prove that for all $1 \leq i, j \leq n, R(i, j, k)$ is a Regex.

This is both of the following:

$R(i, j, 0)$ is a Regex. Inductive Step

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{2}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

In both cases $R(i, j, 0)$ can be expressed as a Regex.
We will now assume that for all $1 \leq i, j \leq n, R(i, j, k-1)$ is a Regex and prove that for all $1 \leq i, j \leq n, R(i, j, k)$ is a Regex.

This is both of the following:

1. A proof by induction on k that, for all $1 \leq i, j \leq n$, $R(i, j, k)$ is a Regex.
2. A dynamic program that computes all $R(i, j, k)$.

Inductive Step $R(i, j, k)$ as a Picture

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{3}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{3}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{3}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.
For all $1 \leq i, j \leq n$ and all $0 \leq k \leq n$

$$
R(i, j, k)=R(i, j, k-1) \bigcup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)
$$

Complete Proof on One Slide

For all $1 \leq i, j \leq n$:

$$
R(i, j, 0)= \begin{cases}\{\sigma: \delta(i, \sigma)=j\} & \text { if } i \neq j\} \tag{3}\\ \{\sigma: \delta(i, \sigma)=j\} \cup\{e\} & \text { if } i=j\}\end{cases}
$$

All $R(i, j, 0)$ are Regex.
For all $1 \leq i, j \leq n$ and all $0 \leq k \leq n$

$$
R(i, j, k)=R(i, j, k-1) \bigcup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)
$$

If $\operatorname{ALL} R(i, j, k-1)$ are Regex, then $\operatorname{ALL} R(i, j, k)$ are Regex.

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.
How long is $\{a, b\}^{n}$?

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.
How long is $\{a, b\}^{n}$?
$\{a, b\}^{n}$ is not a regex.

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.
How long is $\{a, b\}^{n}$?
$\{a, b\}^{n}$ is not a regex.
$\{a, b\}\{a, b\} \cdots\{a, b\}$ is a regex, so length $O(n)$.
However one sees things like $\{a, b\}^{n}$ in textbooks all the time!

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.
How long is $\{a, b\}^{n}$?
$\{a, b\}^{n}$ is not a regex.
$\{a, b\}\{a, b\} \cdots\{a, b\}$ is a regex, so length $O(n)$.
However one sees things like $\{a, b\}^{n}$ in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on next page).

Textbook Regular Expressions

Recall that lang $\{a, b\}^{*} a\{a, b\}^{n}$.

1. DFA requires 2^{n+1} states.
2. NFA can be done with $n+2$ states.
3. How long is the regex for it? Regard the $\{a, b\}^{*} a$ part to be $O(1)$ length.
How long is $\{a, b\}^{n}$?
$\{a, b\}^{n}$ is not a regex.
$\{a, b\}\{a, b\} \cdots\{a, b\}$ is a regex, so length $O(n)$.
However one sees things like $\{a, b\}^{n}$ in textbooks all the time!
Def A textbook regex is one that allow exponents (formal def on next page).
$\{a, b\}^{*} a\{a, b\}^{n}$ is a textbook regular expression of length $O(\log n)$.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.
2. If α and β are trex then $\alpha \cup \beta$ and $\alpha \beta$ are trex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.
2. If α and β are trex then $\alpha \cup \beta$ and $\alpha \beta$ are trex.
3. If α is a trex then α^{*} is a trex.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.
2. If α and β are trex then $\alpha \cup \beta$ and $\alpha \beta$ are trex.
3. If α is a trex then α^{*} is a trex.
4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^{n} is a trex. We write n in binary so length is $|\alpha|+\lg n+O(1)$.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.
2. If α and β are trex then $\alpha \cup \beta$ and $\alpha \beta$ are trex.
3. If α is a trex then α^{*} is a trex.
4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^{n} is a trex. We write n in binary so length is $|\alpha|+\lg n+O(1)$.
Clearly
there is a regex for L iff there is a trex for L.

Textbook Regular Expressions over Σ

All the cool kids call them trex.
Def

1. e is a trex. Every $\sigma \in \Sigma$ is a trex.
2. If α and β are trex then $\alpha \cup \beta$ and $\alpha \beta$ are trex.
3. If α is a trex then α^{*} is a trex.
4. (This is the new step.) If α is a trex and $n \in \mathbb{N}$ then α^{n} is a trex. We write n in binary so length is $|\alpha|+\lg n+O(1)$.
Clearly there is a regex for L iff there is a trex for L.
A trex may give a much shorter expression than a regex.

Regex vs Trex For Length

$$
L_{n}=\Sigma^{*} a \Sigma^{n}
$$

Regex vs Trex For Length

$L_{n}=\Sigma^{*} a \Sigma^{n}$
L_{n} has a length $O(n)$ regex

Regex vs Trex For Length

$L_{n}=\Sigma^{*} a \Sigma^{n}$
L_{n} has a length $O(n)$ regex
L_{n} has a length $O(\log n)$ trex

Regex vs Trex For Length

$L_{n}=\Sigma^{*} a \Sigma^{n}$
L_{n} has a length $O(n)$ regex
L_{n} has a length $O(\log n)$ trex
Need a lower bound for length of regex for L_{n}.
Can we show that every regex for L_{n} requires length $f(n)$ for some $f(n)$ where $\log n \ll f(n)$?

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later).

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later). Then there is an NFA for L_{n} of size $f(n)$.

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later).
Then there is an NFA for L_{n} of size $f(n)$.
Then there is a DFA for L_{n} of size $2^{f(n)}$.

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later).
Then there is an NFA for L_{n} of size $f(n)$.
Then there is a DFA for L_{n} of size $2^{f(n)}$.
Any DFA for L_{n} has $\geq 2^{n+1}$.

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later).
Then there is an NFA for L_{n} of size $f(n)$.
Then there is a DFA for L_{n} of size $2^{f(n)}$.
Any DFA for L_{n} has $\geq 2^{n+1}$.
Need $2^{f(n)}<2^{n+1}$ to get a contradiction.

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later).
Then there is an NFA for L_{n} of size $f(n)$.
Then there is a DFA for L_{n} of size $2^{f(n)}$.
Any DFA for L_{n} has $\geq 2^{n+1}$.
Need $2^{f(n)}<2^{n+1}$ to get a contradiction.
$f(n)=n$ will suffice.

Regex vs Trex For Length

Assume there is a regex for L_{n} of size $f(n)$ (we pick $f(n)$ later). Then there is an NFA for L_{n} of size $f(n)$.
Then there is a DFA for L_{n} of size $2^{f(n)}$.
Any DFA for L_{n} has $\geq 2^{n+1}$.
Need $2^{f(n)}<2^{n+1}$ to get a contradiction.
$f(n)=n$ will suffice.
Upshot There is a lang L_{n} with a trex of size $O(\log n)$ but the regex requires $\geq n$. Great! We have a large size difference.

Perl Regex and Java Regex

Regex and trex:

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations
2. CON There are many patterns we cannot express such as

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations
2. CON There are many patterns we cannot express such as

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Perl Regex and Java Regex (which I won't define)

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations
2. CON There are many patterns we cannot express such as

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Perl Regex and Java Regex (which I won't define)

1. PRO Can express many non-regular patterns such as L above.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations
2. CON There are many patterns we cannot express such as

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Perl Regex and Java Regex (which I won't define)

1. PRO Can express many non-regular patterns such as L above.
2. CON The mathematical theory is not as clean.

Perl Regex and Java Regex

Regex and trex:

1. PRO Clean mathematical theory, closed under many operations
2. CON There are many patterns we cannot express such as

$$
L=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}
$$

Perl Regex and Java Regex (which I won't define)

1. PRO Can express many non-regular patterns such as L above.
2. CON The mathematical theory is not as clean. Maybe only people like me care.

Useful!

The following algorithm is actually used in grep and other pattern recognizers

Useful!

The following algorithm is actually used in grep and other pattern recognizers

1. Input regex α, a pattern you want to search for.

Useful!

The following algorithm is actually used in grep and other pattern recognizers

1. Input regex α, a pattern you want to search for.
2. Create an NFA N for α as in the last slide.

Useful!

The following algorithm is actually used in grep and other pattern recognizers

1. Input regex α, a pattern you want to search for.
2. Create an NFA N for α as in the last slide.
3. Convert the NFA N to a DFA M (usually the state blowup will be reasonable).

Useful!

The following algorithm is actually used in grep and other pattern recognizers

1. Input regex α, a pattern you want to search for.
2. Create an NFA N for α as in the last slide.
3. Convert the NFA N to a DFA M (usually the state blowup will be reasonable).
4. Run the DFA M on a text to find where the pattern occurs.
