Chosen Plaintext Attacks (CPA)

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve can choose to see some messages encoded. Formally she has Black Box for ENC_k . We will:

- 1. Define Chosen Plaintext Attack for perfect security.
- 2. Define Chosen Plaintext Attack for computational security.

Perfect CPA-Security via a Game

 $\Pi = (\text{GEN}, \text{ENC}, \text{DEC})$ be an enc sch, message space \mathcal{M} . Game: Alice and Eve are the players. Alice has full access to Π . Eve has access to ENC_k .

- 1. Alice $k \leftarrow \mathcal{K}$. Eve does NOT know k.
- 2. Eve picks $m_0, m_1 \in \mathcal{M}$ Eve has black box for ENC_k .
- 3. Alice picks $m \in \{m_0, m_1\}$, $c \leftarrow ENC_k(m)$
- 4. Alice sends c to Eve.
- 5. Eve outputs m_0 or m_1 , hoping that her output is $DEC_k(c)$.
- 6. Eve wins if she is right.

Note: ENC_k is randomized, so Eve can't just compute $ENC_k(m_0)$ and $ENC_k(m_1)$ and see which one is c. Does Eve has a strategy that wins over half the time?

Perfect CPA-Security

Π is secure against chosen-plaintext attacks (CPA-secure) if for all Eve.

$$Pr[Eve Wins] \leq \frac{1}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Eve always wins if *ENC_k* is Deterministic

- 1. Eve picks m_0, m_1 . Finds $c_0 = ENC_k(m_0), c_1 = ENC_k(m_1)$.
- 2. Alice sends Eve $c = ENC_k(m_b)$. Eve has to determine *b*.
- 3. If $c = c_0$ then Eve sets b' = 0, if $c = c_1$ then Eve sets b' = 1.

Upshot: ALL deterministic schemes are CPA-insecure.

Comp CPA-Security

 $\Pi = (\text{GEN, ENC, DEC})$ be an enc sch, message space \mathcal{M} . *n* is a security parameter.

Game: Alice and Eve are the players. Alice has full access to Π . Eve has access to ENC_k .

- 1. Alice $k \leftarrow \mathcal{K} \cap \{0,1\}^n$. Eve does NOT know k.
- 2. Eve picks $m_0, m_1 \in \mathcal{M}, \ |m_0| = |m_1|$
- 3. Alice picks $m \in \{m_0, m_1\}$, $c \leftarrow ENC_k(m)$
- 4. Alice sends *c* to Eve.
- 5. Eve outputs m_0 or m_1 , hoping that her output is $DEC_k(c)$.

6. Eve wins if she is right.

Does Eve has a strategy that wins over half the time?

Comp. CPA-Security

Π is CPA-Secure if for all Polynomial Prob Time Eves, there is a neg function ε(n) such that

$$\Pr[\mathsf{Eve Wins}] \le \frac{1}{2} + \epsilon(n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Randomized Encryption

- 1. Any Deterministic Encryption will NOT be CPA-secure.
- 2. Hence we have to use Randomized Encryption.
- 3. The issue is *not* an artifact of our definition: Even being able to tell if two messages are the same is a leak.

4. Next three slides defines Det Encryption, Keyed Functions, Rand Encryption.

Deterministic Encryption (for contrast)

n is a security parameter. A Deterministic Private-Key Encryption Scheme has message space \mathcal{M} , Key space $\mathcal{K} = \{0, 1\}^n$, and algorithms (GEN, ENC, DEC):

(日) (日) (日) (日) (日) (日) (日) (日)

- 1. GEN generates keys $k \in \mathcal{K}$.
- 2. ENC_k encrypts messages, DEC_k decrypts messages.
- 3. $(\forall k \in \mathcal{K})(\forall m \in \mathcal{M}), DEC_k(ENC_k(m)) = m$

Keyed functions

- 1. Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be an efficient, deterministic algorithm
- 2. Define $F_k(x) = F(k, x)$
- 3. The first input is called the key
- Choosing a uniform k ∈ {0,1}ⁿ is equivalent to choosing the function F_k: {0,1}ⁿ → {0,1}ⁿ

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do.

Keyed functions

- 1. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be an efficient, deterministic algorithm
- 2. Define $F_k(x) = F(k, x)$
- 3. The first input is called the key
- Choosing a uniform k ∈ {0,1}ⁿ is equivalent to choosing the function F_k : {0,1}ⁿ → {0,1}ⁿ

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do. They are wrong, we are right.

Randomized Encryption

A Randomized Private-Key Encryption Scheme has message space \mathcal{M} , Key space $\mathcal{K} = \{0, 1\}^n$, algorithms (GEN,ENC,DEC).

- 1. GEN generates keys $k \in \mathcal{K}$ (Think: picking an F_k rand.)
- 2. ENC_k : on input *m* it picks a rand $r \in \{0, 1\}^n$ and outputs $(r, m \oplus F_k(r))$.

3.
$$DEC_k(r,c) = c \oplus F_k(r)$$
.

Note:

- 1. $ENC_k(m)$ is not a function- it can return many different pairs.
- 2. Easy to see that Encrypt-Decrypt works.
- 3. Rand Shift is not an example, but is the same spirit.
- 4. General definition that encompasses Rand Shift: Can replace \oplus with any invertible operation.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Pseudorandom functions

Pseudorandom functions

- Informally, a pseudorandom function "looks like" a random (i.e. uniform) function
- Can define formally via a Game. We won't. Might be HW or Exam Question.
- ► From now on PRF means Pseudorandom function.
- Will actually get Psuedorandom Permutations for real world use.

Constructing a CPA-Secure Encryption

Theorem: If F_k is a PRF then the following encryption scheme is CPA-secure.

- 1. GEN generates keys $k \in \mathcal{K}$ (Think: picking an F_k rand.)
- 2. ENC_k : on input *m* it picks a rand $r \in \{0, 1\}^n$ and outputs $(r, m \oplus F_k(r))$.

3. $DEC_k(r,c) = c \oplus F_k(r)$.

Proof Sketch: If not CPA-secure then F_k is not a PRF.

A Real World (probably) PRF: Substitution-Permutation Networks (SPNs)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Recall...

Want keyed permutation

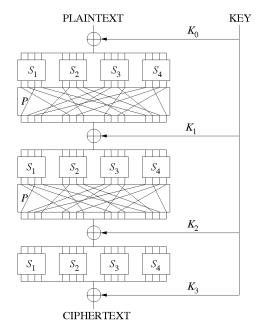
$$F: \{0,1\}^n \times \{0,1\}^\ell \to \{0,1\}^\ell$$

$$n = \text{key length}, \ \ell = \text{block length}$$

Want F_k (for uniform, unknown key k) to be indistinguishable from a uniform permutation over {0, 1}^ℓ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Substitution-Permutation Networks (SPNs)



Substitution-Permutation Networks (SPNs)

For *r*-rounds:

Key will be $k = k_1 \cdots k_r$ and k_i 's will be used along with public *S*-box to create perms.

- $f_{k_i}(x) = S_i(k_i \oplus x)$, where S_i is a public permutation
- ► *S_i* are called "S-boxes" (substitution boxes)
- XORing the key is called "key mixing"
- Note that SPN is invertible (given the key)

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to you find?

S-Boxes are HARD to Create

Building them so that an SPN is a PRF is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to you find?

20,000. Given repeats and conference-Journal repeats, there are approx 10,000 papers on S-boxes.

Substitution-Permutation Networks (SPNs)

- 1) There are attacks on 1-round and 2-round SPN's
- 2) Can extend attacks to r rounds but time complexity goes up.
- 3) These attacks are better than naive but still too slow.
- 4) SPN considered secure if r is large enough.
- 5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure.

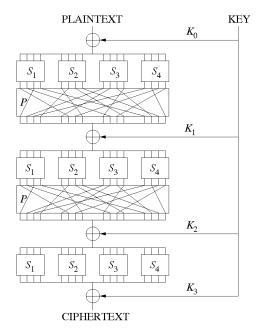
Substitution-Permutation Networks (SPNs)

- 1) There are attacks on 1-round and 2-round SPN's
- 2) Can extend attacks to r rounds but time complexity goes up.
- 3) These attacks are better than naive but still too slow.
- 4) SPN considered secure if r is large enough.

5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure. For now.
7) Takeway: AES is a real world SPN that is really used and is believed to be a PRF.

Feistel networks

In SPN Network S-boxes Invertible



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

PRO: With enough rounds secure.

CON: Hard to come up with invertible S-boxes.

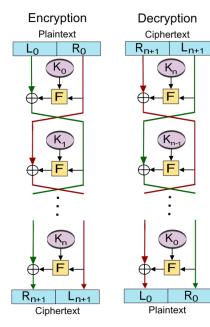
Feistel Networks will not need invertible components but will be secure.

Feistel networks

- 1) Message length is ℓ . Just like SPN.
- 2) Key $k = k_1 \cdots k_r$ of length *n*. *r* rounds. Just like SPN.
- 3) $|k_i| = n/r$. Need NOT be ℓ . Unlike SPN.
- 4) Use key k_i in *i*th round. Just like SPN.
- 5) Instead of S-boxes we have public functions \hat{f}_i . Need not be invertible! Unlike SPN. We derive $f_i(R) = \hat{f}_i(k_i, R)$ from them.

For 1-round: Input: L_0R_0 , $|L_0| = |R_0| = \ell/2$. Output: L_1R_1 where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$ Invertible! The nature of $f_1(R)$ does not matter. 1) Input (L_1R_1) 2) $R_0 = L_1$. 3) Can compute $f_1(R_0)$ and hence $L_0 = R_1 \oplus f_1(R_0)$.

Feistel Network



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

r-round Feistel networks

1) Message length is ℓ . Just like SPN.

2) Key $k = k_1 \cdots k_r$ of length *n*. *r* rounds. Just like SPN.

3) $|k_i| = n/r$. Need NOT be ℓ . Unlike SPN.

4) Use key k_i in *i*th round. Just like SPN.
5) Public functions f_i. Need not be invertible! Unlike SPN.
f_i(R) = f_i(k_i, R) from

Input: L_0R_0 , $|L_0| = |R_0| = \ell/2$. Output or Round 1: L_1R_1 where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$ Output or Round 2: L_2R_2 where $L_2 = R_1$, $R_2 = L_1 \oplus f_2(R_1)$: : :

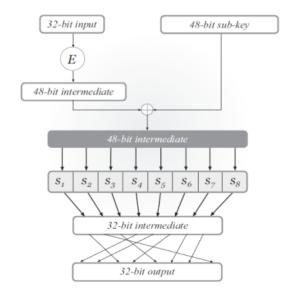
Output or Round r: $L_r R_r$ where $L_r = R_{r-1}$, $R_r = L_{r-1} \oplus f_r(R_{r-1})$

Data Encryption Standard (DES)

- Standardized in 1977
- ▶ 56-bit keys, 64-bit block length
- 16-round Feistel network
 - Same round function in all rounds (but different sub-keys)

Basically an SPN design! But easier to build.

DES mangler function is \hat{f}_i



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○◇

Security of DES

PRO: DES is extremely well-designed

Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

PRO: DES is extremely well-designedPRO: Known attacks brute force or need lots of Plaintext.BIG CON: Parameters are too small! Brute-force search is feasible

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

56-bit key length

- A concern as soon as DES was released.
- Released in 1975, but that was then, this is now.
- Brute-force search over 2⁵⁶ keys is possible
 - ▶ 1997: 1000s of computers, 96 days
 - 1998: distributed.net, 41 days
 - ▶ 1999: Deep Crack (\$250,000), 56 hours
 - 2018: 48 FPGAs, 1 day
 - 2019: Will do as Classroom demo when teach this course in Fall of 2019.

Increasing key length?

- DES has a key that is too short
- How to fix?
 - Design new cipher. HARD!
 - Tweak DES so that it takes a larger key. Since this is Hardware not Software this is HARD!
 - Build a new cipher using DES as a black box. EASY?

Double encryption

(still invertible)

 If best known attack on F takes time 2ⁿ, is it reasonable to assume that the best known attack on F² takes time 2²ⁿ? Vote! YES, NO, UNKNOWN TO SCIENCE

Double encryption

(still invertible)

If best known attack on F takes time 2ⁿ, is it reasonable to assume that the best known attack on F² takes time 2²ⁿ?
 Vote! YES, NO, UNKNOWN TO SCIENCE
 NO The Meet-in-the-Middle attack takes 2ⁿ time. We omit details.

Triple encryption

► Define
$$F^3$$
: $\{0,1\}^{3n} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ as follows:
 $F^3_{k_1,k_2,k_3}(x) = F_{k_1}(F_{k_2}(F_{k_3}(x)))$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

- Can do meet-in-the-middle but would be 2^{2n} .
- No better attack known.

Two-key triple encryption

► Define
$$F^3$$
: $\{0,1\}^{2n} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ as follows:
 $F^3_{k_1,k_2}(x) = F_{k_1}(F_{k_2}(F_{k_1}(x)))$

Best attacks take time 2²ⁿ — optimal given the key length!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Sames on key length.
- Good for some backward-compatibility issues