UNIVERSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C.
Mathematical Sciences Directorate Air Force Office of Scientific Research Washington 25, D. C.
AFOSR Report No.

THEOREMS IN THE ADDITIVE THEORY OF NUMBERS

by

R. C. Bose, University of North Carolina,
and

S. Chowla, University of Colorado
November, 1960
Contract No. AF 49(638)-213
This paper extends some earlier results on difference sets and B_{2} sequences by Singer, Bose, Erdös and Turan, and Chowla.

Qualified requestors may obtain copies of this report from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia. Department of Defense contractors must be established for ASTIA services, or have their "need-to-know" certified by the cognizant military agency of their project or contract.

THEOREMS IN THE ADDITIVE THEORY OF NUMBERS

R. C. Bose and S. Chowla

Summary. This paper extends some earlier results on difference sets and B_{2} sequences by Singer, Bose, Erdois and Turan, and Chowla.

1. Singer (6) proved that if $m=p^{n}$ (where p is a prime), then we can find $m+1$ integers

$$
d_{0}, d_{1}, \ldots, d_{m}
$$

such that the $m^{2}+m$ differences $d_{i}-d_{j}(i \neq j, i, j=0,1, \ldots, m)$ when reduced $\bmod \left(m^{2}+m+1\right)$, are all the different non-zero integers less then $m^{2}+m+1$. Bose (1) proved that if $m=p^{n}$ (where p is a prime), then we can find m integers

$$
a_{1}, a_{2}, \ldots, a_{m}
$$

such that the $m(m-1)$ differences $d_{i}-d_{j}(i \neq j, i, j=1,2, \ldots, m)$ when reduced $\bmod \left(m^{2}-1\right)$, are all the different non-zero integers less than $m^{2}-1$, which are not divisible by $m+1$.

From the theorems of singer and Bose the following corollaries are obvious.

Corollary 1. If $m=p^{n}$ (where p is a prime), then we can find $m+1$ integers

$$
d_{0}, d_{1}, \ldots, d_{m}
$$

such that the sums $d_{i}+d_{j}$ are all different $\bmod \left(m^{2}+m+1\right)$, where $0 \leq i \leq j \leq m$.
Corollary 2. If $m=p^{n}$ (where p is prime), then we can find m integers

$$
d_{1}, d_{2}, \ldots, d_{m}
$$

such that the sums $d_{i}+d_{j}$ are all different $\bmod \left(m^{2}-1\right)$, where $0 \leq i \leq j \leq m$.
This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-213. Reproduction in whole or part is permitted for any purpose of the United States Government.

We shall prove here the following two theorems generalizing corollaries 1 and 2.

Theorem 1. If $m=p^{n}$ (where p is prime) we can find m nonzero integers (less than m^{r})

$$
\begin{equation*}
d_{1}=1, \quad d_{2}, \ldots, a_{m} \tag{1.0}
\end{equation*}
$$

such that the sums

$$
\begin{equation*}
d_{i_{1}}+d_{i_{2}}+\ldots+d_{i_{r}} \tag{1.1}
\end{equation*}
$$

$1 \leq i_{1} \leq I_{2} \cdot \cdots \leq i_{r} \leq m$ are all different $\bmod \left(m^{r}-1\right)$.
Proof. Let $\alpha_{1}=0, \alpha_{2}, \ldots, \alpha_{m}$ be all the different elements of the Galois field $G F\left(p^{n}\right)$. Let x be a primitive element of the extended field $G F\left(p^{n r}\right)$. Then x cannot satisfy any equation of degree less than r with elements from $\operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$. Let

$$
\begin{equation*}
x^{d_{i}}=x+\alpha_{i}, \quad i=1,2, \ldots, m ; \alpha_{i}<p^{n r} \tag{1.2}
\end{equation*}
$$

then the required set of integers is

$$
d_{1}=1, d_{2}, \ldots, d_{m}
$$

If possible let

$$
d_{i_{1}}+d_{i_{2}}+\ldots d_{i_{r}}=d_{j_{1}}+d_{j_{2}}+\ldots+d_{j_{r}} \bmod \left(m^{r}-1\right)
$$

where $1 \leq i_{1} \leq i_{2} \cdots \leq i_{r} \leq m, \quad 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{r} \leq m$, and $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \neq\left(j_{1}, j_{2}, \ldots, j_{r}\right)$. Then

$$
\begin{equation*}
x^{d_{i_{1}}} x^{d_{i_{2}}} \ldots x^{d_{i_{r}}}=x^{d_{j_{1}}}{ }_{x}^{d_{j_{2}}} \ldots x^{d_{i_{r}}} \tag{1.3}
\end{equation*}
$$

Hence from (1.2)

$$
\left(x+\alpha_{i_{1}}\right)\left(x+\alpha_{i_{2}}\right) \cdot \cdot\left(x+\alpha_{i_{r}}\right)=\left(x+\alpha_{j_{1}}\right)\left(x+\alpha_{j_{2}}\right) \cdots\left(x+\alpha_{j_{r}}\right)
$$

After cancelling the highest power of x from both sides we are left with an equation of the $(r-1)$-th degree in x, with coefficients from $G F\left(p^{n}\right)$, which is impossible. Hence the theorem.

Example 1. Let $p^{n}=5, r=3$. The roots of the equation $x^{3}=2 x+3$ are primitive elements of $G F\left(5^{3}\right)$. [See Carmichael (2), p. 2627. If x is any root then we can express the powers of x in the form $a x+b$ where a and b belong to the field $G F(5)$. We get

$$
x^{1}=x+0, x^{103}=x+1, x^{119}=x+2, x^{14}=x+3, x^{34}=x+4
$$

Hence the set of integers

$$
a_{1}=1, a_{2}=14, a_{3}=34, a_{4}=103, a_{5}=119
$$

is such that the sum of any three (repetitions allowed) is not equal to the sum of any other three mod (124). This can be directly verified by calculating the 35 sums $d_{i_{1}}+d_{i_{2}}+d_{i_{3}}, 1 \leq i_{1} \leq i_{2} \leq i_{3} \leq 5$.

Theorem 2. If $m=p^{n}$ (where p is a prime) and

$$
\begin{equation*}
q=\left(m^{r+1}-1\right) /(m-1) \tag{1.4}
\end{equation*}
$$

we can find $m+1$ integers (less than q)

$$
\begin{equation*}
d_{0}=0, d_{1}=1, d_{2}, \ldots, d_{m} \tag{1.5}
\end{equation*}
$$

such the sums

$$
\begin{equation*}
d_{i_{1}}+d_{i_{2}}+. \cdot+d_{i_{r}} \tag{1.6}
\end{equation*}
$$

$0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq m$, are all different $\bmod (q)$.

Proof. Let $\alpha_{1}=0, \alpha_{2}=1, \alpha_{3}, \ldots \alpha_{m}$ be all the elements of $G F\left(p^{n}\right)$, and let x be a primitive element of the extended field $G F\left(p^{n r+n}\right)$. Then x^{q} and its various powers belong to $G F\left(p^{n}\right)$, and x cannot satisfy any equation of degree less than $r+1$, with coefficients from $G F\left(p^{n}\right)$. Let

$$
\left(\lambda_{0}, \mu_{0}\right),\left(\lambda_{1}, \mu_{1}\right), \ldots,\left(\lambda_{m}, \mu_{m}\right)
$$

be pairs of elements from $G F\left(p^{n}\right)$, such that the ratios $\lambda_{0} / \mu_{0}, \lambda_{1} / \mu_{1}, \ldots, \lambda_{m} / \mu_{m}$ are all different, where infinity is regarded as one of the ratios. Thus we may take for example

$$
\left(\lambda_{0}, \mu_{0}\right)=(1,0),\left(\lambda_{i}, \mu_{i}\right)=\left(\alpha_{i}, 1\right), \quad i=1,2, \ldots, m
$$

We can find $d_{i}<q(i=0,1,2, . . ., m)$, such that

$$
\begin{equation*}
\rho_{i} x^{d_{i}}=\lambda_{i}+\mu_{i} x \tag{1.7}
\end{equation*}
$$

θ_{i} being a suitably chosen non-zero element of $G F\left(p^{n}\right)$. Then the required set of integers is

$$
d_{0}=0, \quad d_{1}=1, \quad d_{2}, \cdots, d_{m}
$$

If possible let

$$
\begin{equation*}
d_{i_{1}}+d_{i_{2}}+\ldots+d_{i_{r}}=d_{j_{1}}+d_{j_{2}}+\ldots+d_{j_{r}}(\bmod q) \tag{1.8}
\end{equation*}
$$

where $0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq m, 0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{r} \leq m$, $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \neq\left(j_{i}, j_{2}, \cdots j_{r}\right)$. Then

$$
x^{d_{i}}{ }_{x^{i_{2}}}^{d_{2}} \ldots x^{d_{i_{r}}}=\alpha x^{d_{j_{1}}} x^{d_{j_{2}}} \ldots x^{d}
$$

where α is an element of $\operatorname{GF}\left(p^{n}\right)$. Substituting from (1.7) we have an equation of degree r in x, with coefficients from $G F\left(p^{n}\right)$. This is impossible. Hence the theorem.

Example 2. Let $p^{n}=3, r=3$. The roots of the equation $x^{4}=2 x^{3}+2 x^{2}+x+1$ are primitive elements of $G F\left(3^{4}\right)$ [See Carmichael (2), p. 2627. If x is any root then we can express the powers of x in the form $a x+b$ where a and b belong to the field GF(3). We get

$$
x^{0}=1, x^{1}=x, 2 x^{26}=1+x, 2 x^{32}=2+x
$$

Hence the set of integers

$$
d_{0}=0, \quad d_{1}=1, \quad d_{2}=26, \quad a_{3}=32
$$

is such that the sum of any three (repetitions allowed) is not equal to the sum of any other three mod (40). This can be directly verified by calculating the 20 sums $d_{i_{1}}+d_{i_{2}}+d_{i_{3}}, 0 \leq d_{i_{1}} \leq d_{i_{2}} \leq d_{i_{3}} \leq 3$.
3. $A B_{2}$ sequence is a sequence of integers

$$
d_{1}, d_{2}, d_{3}, \ldots, a_{k}
$$

in ascending order of magnitude, such that the sums $d_{i}+d_{j}(i \leq j)$ are all different. Let $F_{2}(x)$ denote the maximum number of members which a B_{2} sequence can have, when no member of the sequence exceeds x. Clearly $F_{2}(x)$ is a non-decreasing function of x. Erdös and Turan (4) proved that

$$
\begin{equation*}
F_{2}(m) / \sqrt{m}<I+\epsilon \tag{3.0}
\end{equation*}
$$

for all positive ϵ and $m>m(\epsilon)$, and conjectured that

$$
\begin{equation*}
\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \mathrm{~F}_{2}(\mathrm{~m}) / \sqrt{\mathrm{m}}=1 \tag{3.1}
\end{equation*}
$$

Chowla (3) deduced from collaries 1 and 2 , of section 1 , that if m is a prime power
(i) $F_{2}\left(m^{2}\right) \geq m+1$, (ii) $\quad F_{2}\left(m^{2}+m+2\right) \geq m+2$,
and proved the conjecture of Erdos and Turan.
We shall here generalize the notion of a B_{2} sequence and prove some theorems about these generalized sequences.
$A B_{r}$ sequence ($r \geq 2$) may be defined as a sequence

$$
a_{1}, \quad a_{2}, \quad a_{3}, \ldots, a_{k}
$$

of integers in ascending order of magnitude such that the sums

$$
d_{i_{1}}+d_{i_{2}}+\ldots+d_{i_{r}} \quad\left(i_{1} \leq i_{2} \leq \ldots . i_{r}\right)
$$

are all different. Let $F_{r}(x)$ the maximum number of members a B_{r} sequence can have when no member of the sequence exceeds x. Clearly $F_{r}(x)$ is a nondecreasing function of x. We can then state the following theorems.

Theorem 3. If $m=p^{n}$, where p is prime, and $r \geq 2$

$$
\begin{equation*}
\text { (i) } F_{r}\left(m^{r}\right) \geq m+1, \quad \text { (ii) } F_{r}\left(1+\frac{m^{r+1}-1}{m-1}\right) \geq m+2 \tag{3.3}
\end{equation*}
$$

Proof of part (i). Let $m=p^{n}$, and let $d_{1}=1, d_{2}, \ldots, d_{m}$ be integers satisfying the conditions of Theorem 1 . Then the sequence

$$
\begin{equation*}
d_{1}=1, \quad d_{2}, \ldots, d_{m}, d_{m+1}=m^{r} \tag{3.4}
\end{equation*}
$$

is a B_{r} sequence. For if possible let

$$
\begin{equation*}
d_{i_{1}}+d_{i_{2}}+\ldots+d_{i_{r}}=d_{j_{1}}+d_{j_{2}}+\ldots+d_{j_{r}} \tag{3.5}
\end{equation*}
$$

$1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq m+1,1 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{r}\left(i_{1}, i_{2}, \ldots, i_{r}\right) \neq\left(j_{1}, j_{2}, \ldots j_{r}\right)$
Then the relation (3.5 also holds mod $\left(m^{r}-1\right)$, with any d_{m+1} 's occuring in it replaced by $d_{1}=1$. This contradicts Theorem 1. Hence (3.4) is B_{r} sequence with
$m+1$ members, no member of which exceeds m^{r}. Hence $F_{r}\left(m^{r}\right) \geq m+1$. Proof of part (ii). Let $m=p^{n}$, and let $d_{0}=0, d_{1}=1, d_{2}, \ldots, d_{m}$ satisfy conditions of Theorem 2. Then the sequence

$$
\begin{equation*}
d_{1}=1, \quad a_{2}, \cdot d_{m}, \quad d_{m+1}=q, d_{m+2}=q+1 \tag{3.6}
\end{equation*}
$$

where $q=\left(m^{r+1}-1\right) /(m-1)$ is a B_{r} sequence. For if possible let

$$
\begin{equation*}
d_{i_{1}}+d_{i_{2}}+\cdots+d_{i_{r}}=d_{j_{1}}+d_{j_{2}}+\cdots+d_{j_{r}} \tag{3.7}
\end{equation*}
$$

where $0 \leq i_{1} \leq i_{2} \leq \cdots \cdots i_{r} \leq m+1,0 \leq j_{1} \leq j_{2} \leq \cdots \cdots \leq j_{r} \leq m+1$, $;$
$\left(i_{1}, i_{2}, \ldots, i_{r}\right) \neq\left(j_{1}, j_{2}, \ldots, j_{r}\right)$. Then the relation (3.7) also holds mod (q), where $d_{m}^{\prime \prime} s$ occurring in it are replaced by $d_{0}=0$, and d_{m+1} 's occurring in it are replaced by $d_{1}=1$. This contradicts Theorem 2. Hence (3.6) is a B_{r} sequence with $m+2$ members, no member of which exceeds $q+1$. Hence

$$
F_{r}\left(1+\frac{m^{r+1}-1}{m-1}\right) \geq m+2
$$

Example 3. It follows from Examples 1 and 2, that

$$
\text { (i) } 1,14,34,103,119,125
$$

$$
\text { (1i) } 1,26,32,40,41
$$

are B_{3} sequences.
4. Taking $n=1$ in Theorem 3(i), we have

$$
\begin{equation*}
F_{r}\left(p^{r}\right) \geq p+1 \tag{4.0}
\end{equation*}
$$

where p is any prime. Let

$$
\begin{equation*}
\mathrm{p} \leq \mathrm{y}^{1 / r} \leq \mathrm{p}^{\prime} \tag{4.1}
\end{equation*}
$$

where p and p^{\prime} are consecutive primes. It follows from a Theorem of Ingham (5), that

$$
\begin{equation*}
p^{\prime}-p=O\left(p^{2 / 3}\right) \tag{4.2}
\end{equation*}
$$

It follows from the monotonicity of F_{r} that

$$
\begin{equation*}
F_{r}(y) \geq F_{r}\left(p^{r}\right) \geq p+1 \tag{4.3}
\end{equation*}
$$

From (4.1) and (4.2)

$$
\begin{equation*}
y^{1 / x}=p+O\left(p^{2 / 3}\right) \tag{4.4}
\end{equation*}
$$

Since $y^{1 / r} \geq p \geq \frac{1}{2} y^{1 / r}, p=O\left(y^{1 / r}\right)$. Hence from (4.4)

$$
\begin{equation*}
p=y^{1 / r}-O\left(y^{2 / 3 r}\right) . \tag{4.5}
\end{equation*}
$$

From (4.3) and (4.5)

$$
\begin{equation*}
F_{r}(y) \geq y^{1 / r}-0\left(y^{2 / 3 r}\right) \tag{4.6}
\end{equation*}
$$

Hence we have:
Theorem 4. \quad iim $\frac{F_{r}(y)}{y^{1 / r}} \geq 1, \quad y \rightarrow \infty$
Erdös and Turam (4), proved that for $r=2$

$$
\begin{equation*}
\operatorname{iim} \frac{F_{r}(y)}{y^{1 / r}} \leq 1 \quad \text { as } y \rightarrow \infty \tag{4.7}
\end{equation*}
$$

We may conjecture that (4.7) remains true for $r \geqq 3$, though we gather from oral conversations with Professor Erdoss that this is still unproved. If the conjecture is correct it will follow that

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{F_{r}(y)}{y^{1 / x}}=1 \tag{4.8}
\end{equation*}
$$

for $r \geqq 2$. At present we only know this to be true for $r=2$.

1. R. C. Bose,"An affine analogue of Singer's theorem," J. Ind. Math. Soc. (new series), 6 (1942), 1-15.
2. R. D. Carmichael, Introduction to the theory of groups of innite order, Dover publications Inc.
3. S. Chowla,"Solution of a problem of Eraös and Turan in additive number theory,"Proc. Nat. Acad. Sci. India, 14(1944), 1-2.
4. Erdös and Turan, "On a problem of Sidon in additive number theory and some related problems," J. Lond. Math. Soc., (1941), 212-215.
5. A. E. Ingham, "On the difference between consecutive primes," Quarterly J. Math., Oxford series, 8 (1937), 255-266.
6. J. Singer,"A theorem in finite projective geometry and some applications to number theory," Trans. Amer. Math. Soc. 43 (1938), 377-385.

University of North Carolina
University of Colorado

