Cutting Plane Rank Lower Bound for Ramsey's Theorem

Daniel Apon

University of Maryland - College Park

・ロト ・回ト ・ヨト ・ヨト

 Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"

- Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"
- 2. What is the relative complexity of proving upper bounds on Ramsey numbers?

- Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"
- 2. What is the relative complexity of proving upper bounds on Ramsey numbers?
- 3. Focus on Cutting Plane proofs
 - 3.1 High-dimensional geometric proofs
 - 3.2 IPs vs LPs
 - 3.3 More details soon =)

What is the proof complexity of the propositional statement $r(k, k) \le 4^k$?

イロン イヨン イヨン イヨン

What is the proof complexity of the propositional statement $r(k, k) \le 4^k$?

1. This is TRUE and KNOWN (Erdös, Szekeres)

What is the proof complexity of the propositional statement $r(k, k) \le 4^k$?

- 1. This is TRUE and KNOWN (Erdös, Szekeres)
- 2. We'd like: An exp lower bound on proof size w.r.t. formula size

イロン イヨン イヨン イヨン

What is the proof complexity of the propositional statement $r(k, k) \le 4^k$?

- 1. This is TRUE and KNOWN (Erdös, Szekeres)
- 2. We'd like: An exp lower bound on proof size w.r.t. formula size
- 3. We get: An exp lower bound on RANK w.r.t. k

1. Intro to Cutting Plane Proofs

メロト メタト メヨト メヨト 三日

- 1. Intro to Cutting Plane Proofs
- 2. A Prover/Delayer game

イロン イヨン イヨン イヨン

- 1. Intro to Cutting Plane Proofs
- 2. A Prover/Delayer game
- 3. A Protection Lemma
 - 3.1 Long games \implies High CP Rank

・ロン ・回と ・ヨン・

- 1. Intro to Cutting Plane Proofs
- 2. A Prover/Delayer game
- 3. A Protection Lemma
 - 3.1 Long games \implies High CP Rank
- 4. The Delayer's Strategy
 - 4.1 Games are long!
 - 4.2 Proof by lo's Method

イロン イヨン イヨン イヨン

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \le b \in A\vec{x} \le \vec{b}$)

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \le b \in A\vec{x} \le \vec{b}$)

2. Final line: An arithmetically FALSE statement (e.g. $1 \le 0$)

- 1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \le b \in A\vec{x} \le \vec{b}$)
- 2. Final line: An arithmetically FALSE statement (e.g. $1 \le 0$)
- 3. In between: Anything derivable from previous lines using:
 - 3.1 Inequality Addition
 - 3.2 Scalar Multiplication
 - 3.3 Rounded Division

- 1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \le b \in A\vec{x} \le \vec{b}$)
- 2. Final line: An arithmetically FALSE statement (e.g. $1 \le 0$)
- 3. In between: Anything derivable from previous lines using:
 - 3.1 Inequality Addition
 - 3.2 Scalar Multiplication
 - 3.3 Rounded Division

A CP derivation of a false statement from $A\vec{x} \leq \vec{b}$ is EQUIVALENT to showing " $A\vec{x} \leq \vec{b} \notin SAT$ "

1. Start at
$$P \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : A\vec{x} \leq \vec{b}\}$$
 for integral A, b

イロン イヨン イヨン イヨン

- 1. Start at $P \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : A\vec{x} \leq \vec{b}\}$ for integral A, b
- 2. Target is P_I the convex hull of $P \cap \mathbb{Z}^n$

イロン イヨン イヨン イヨン

- 1. Start at $P \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : A\vec{x} \leq \vec{b}\}$ for integral A, b
- 2. Target is P_I the convex hull of $P \cap \mathbb{Z}^n$
- 3. Add/mult gives linear comb. of earlier inequalities

- 1. Start at $P \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : A\vec{x} \leq \vec{b}\}$ for integral A, b
- 2. Target is P_I the convex hull of $P \cap \mathbb{Z}^n$
- 3. Add/mult gives linear comb. of earlier inequalities
- 4. Another option: Derive P' from P with rounded division.

4.1 Observe that for all $c \in \mathbb{Z}^n, \delta \in \mathbb{R}$,

$$c^T y \leq \delta$$
 for all $y \in P \Rightarrow c^T x \leq \lfloor \delta \rfloor$

1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

- 1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
- 2. THM: \exists integer $r \ge 0$ s.t. $P^{(r)} = P_I$.

◆□> ◆□> ◆臣> ◆臣> ―臣 …のへで

- 1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
- 2. <u>THM</u>: \exists integer $r \ge 0$ s.t. $P^{(r)} = P_I$.
- 3. DEFN: The RANK of P is the min such r

- 1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
- 2. <u>THM</u>: \exists integer $r \ge 0$ s.t. $P^{(r)} = P_I$.
- 3. DEFN: The RANK of P is the min such r
- 4. <u>THM</u>: If $c^T x \le d$ has a CP derivation of depth r beginning from $Ax \le b$ defining a polyhedron P, then the rank of $c^T x \le d$ relative to P is at most r.

- 1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
- 2. <u>THM</u>: \exists integer $r \ge 0$ s.t. $P^{(r)} = P_I$.
- 3. DEFN: The RANK of P is the min such r
- 4. <u>THM</u>: If $c^T x \le d$ has a CP derivation of depth r beginning from $Ax \le b$ defining a polyhedron P, then the rank of $c^T x \le d$ relative to P is at most r.
 - 4.1 ∃ integral pt inside $c^T x \le d$ with rank ≥ s relative to $Ax \le b$ ⇒ any CP derivation from $Ax \le b$ has depth ≥ s

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

"Any graph with 4^k vertices has either a clique of size k or an independent set of size k."

・ 同 ト ・ ヨ ト ・ ヨ ト

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

"Any graph with 4^k vertices has either a clique of size k or an independent set of size k."

This is serious action movie material.

▲圖▶ ▲臣▶ ★臣▶

- 1. Parameter: $k \in \mathbb{N}$
- 2. Game begins on an uncolored complete graph on $n = 4^k$ vertices. Players color the edges until...

・ロン ・聞と ・ほと ・ほと

- 1. Parameter: $k \in \mathbb{N}$
- 2. Game begins on an uncolored complete graph on $n = 4^k$ vertices. Players color the edges until...
- 3. PROVER wants to force a monochromatic complete graph on *k* vertices
- 4. DELAYER wants todelay!

소리가 소문가 소문가 소문가

- 1. Parameter: $k \in \mathbb{N}$
- 2. Game begins on an uncolored complete graph on $n = 4^k$ vertices. Players color the edges until...
- 3. PROVER wants to force a monochromatic complete graph on *k* vertices
- 4. DELAYER wants todelay!
- 5. PROVER will eventually win. The interesting question is HOW LONG does it take?

PROVER plays first. All vertices are initially uncharged.
 C_i are the charged vertices after PROVER's ith move.

(4月) イヨト イヨト

- PROVER plays first. All vertices are initially uncharged.
 C_i are the charged vertices after PROVER's ith move.
- 2. PROVER i^{th} move:
 - 2.1 CHARGE two new vertices u_i, v_i 2.2 COLOR (u_i, v_i)

- PROVER plays first. All vertices are initially uncharged. C_i are the charged vertices after PROVER's ith move.
- PROVER *i*th move:
 2.1 CHARGE two new vertices *u_i*, *v_i*
 - 2.2 $\overline{\text{COLOR}(u_i, v_i)}$
- 3. DELAYER *i*th move:
 - 3.1 For uncolored $(w, w') \in (C_i \setminus \{u_i, v_i\})^2$, COLOR them

(人間) (人) (人) (人)

$\underline{\mathsf{GOAL}}: \text{Show that Long Games} \Rightarrow \mathsf{High Rank}$

・ロト ・回ト ・ヨト ・ヨト

GOAL: Show that Long Games \Rightarrow High Rank

1. Equate colored graphs with POINTS in high-dim space 1.1 {BLUE, NONE, RED} $\mapsto \{0, \frac{1}{2}, 1\}$ 1.2 $G \in \{0, \frac{1}{2}, 1\}^{\binom{|V|}{2}} \mapsto G \in [0, 1]^{\binom{|V|}{2}}$

GOAL: Show that Long Games \Rightarrow High Rank

- 1. Equate colored graphs with POINTS in high-dim space 1.1 {BLUE, NONE, RED} $\mapsto \{0, \frac{1}{2}, 1\}$ 1.2 $G \in \{0, \frac{1}{2}, 1\}^{\binom{|V|}{2}} \mapsto G \in [0, 1]^{\binom{|V|}{2}}$
- 2. <u>DEFN</u>: The AVERAGE, $\frac{1}{2}(G_1 + G_2)$, of two graphs G_1, G_2 is the graph $H = (V, \frac{E_1 + E_2}{2})$

<u>DEFN</u>: The PROTECTION SET S = S(G) for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

<u>DEFN</u>: The PROTECTION SET S = S(G) for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

- 1. The charged part of G is C
- 2. The charged part of both G(u, v) and G(u, v) is $C \cup \{u, v\}$
- 3. $G = \frac{1}{2}(G(u, v) + G(u, v))$

- 4 回 ト 4 ヨ ト 4 ヨ ト

<u>DEFN</u>: The PROTECTION SET S = S(G) for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

- 1. The charged part of G is C
- 2. The charged part of both G(u, v) and G(u, v) is $C \cup \{u, v\}$
- 3. $G = \frac{1}{2}(G(u, v) + G(u, v))$

Note: For fixed (u, v), the two colored graphs PROVER can choose in the i^{th} round average to the $(i - 1)^{\text{th}}$ round graph

KEY LEMMA: Let *G* be a colored graph with an even number of vertices and a charged part of even size. If *G* has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

KEY LEMMA: Let *G* be a colored graph with an even number of vertices and a charged part of even size. If *G* has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

Intuitively, Long Games \Rightarrow High Rank

(4月) イヨト イヨト

1. $G \in P^{(i)}$:

1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

- 4 回 と 4 き と 4 き と

1. $\underline{G \in P^{(i)}}$:

1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)}}$:

2.1 By def: We have $a^T G > b$ where $a^T x \le b$ has rank i + 1.

1. $\underline{G \in P^{(i)}}$:

1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)}}$:

2.1 By def: We have $a^T G > b$ where $a^T x \le b$ has rank i + 1. 2.2 Let $a'^T x \le b'$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0 < r < q$, 2.2.1 a'[u,v] = qa[u,v]2.2.2 b' = qb+r

- 1. $\underline{G \in P^{(i)}}$:
 - 1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.
- 2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)}}$:
 - 2.1 By def: We have $a^T G > b$ where $a^T x \le b$ has rank i + 1. 2.2 Let $a'^T x \le b'$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0 < r < q$, 2.2.1 a'[u,v] = qa[u,v]2.2.2 b' = qb+r
 - 2.3 Then, $G \in P^{(i)} \Rightarrow a'^T G \le b' < q(b+1) \Rightarrow b < a^T G < b+1$. By constr: $a^T G = b + \frac{1}{2}$.

We have: $a^T G = b + \frac{1}{2}$

イロン イロン イヨン イヨン 三日

We have: $a^T G = b + \frac{1}{2}$

Since $a \in \mathbb{Z}^m$, then

$$\sum_{(u,v)\in\mathcal{U}^2} a[u,v] + \sum_{u\in\mathcal{U},w\in\mathcal{C}} a[u,w] \equiv 1 \pmod{2},$$

else $a^T G$ would be integral.

イロン イヨン イヨン イヨン

We have: $a^T G = b + \frac{1}{2}$

Since $a \in \mathbb{Z}^m$, then

$$\sum_{(u,v)\in\mathcal{U}^2} a[u,v] + \sum_{u\in\mathcal{U},w\in\mathcal{C}} a[u,w] \equiv 1 \pmod{2},$$

else $a^T G$ would be integral.

Claim: This implies $\exists (u, v) \in \mathcal{U}^2$ s.t.

$$a[u,v] + \sum_{w \in \mathcal{C}} a[u,w] + \sum_{w \in \mathcal{C}} a[v,w] \equiv 1 \pmod{2}.$$

<u>Proof</u>: Formal proof is a bit lengthy. High-level idea: Suppose not, then can show some fixed part of G has both even and odd size

(4月) (1日) (日) 日

Fix (u, v) as implied by prev.

Look at sum over three groups of edges:

- 1. (A): all edges between two charged vertices,
- 2. (B): edges enumerated in defn of (u, v) (those induced in one round of P/D),
- 3. (C): rest of the edges in G.

1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.

・ロン ・回 と ・ ヨン ・ ヨン

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:

・ロト ・四ト ・ヨト ・ヨト

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:

2.1 By defn: Only differ from G on edges in B.

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 - 2.1 By defn: Only differ from G on edges in B.
 - 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''

・ロン ・回と ・ヨン ・ヨン

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 - 2.1 By defn: Only differ from G on edges in B.
 - 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''
 - 2.3 Then, $\underline{B', B''}$ are integral since their edges are colored in the new graphs.

・ロト ・回ト ・ヨト ・ヨト

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 - 2.1 By defn: Only differ from G on edges in B.
 - 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''
 - 2.3 Then, $\underline{B', B''}$ are integral since their edges are colored in the new graphs.
- 3. Therefore, the numbers $a^T G(u, v)$, $a^T G(u, v)$ are integral and (from before) less than b + 1.

소리가 소문가 소문가 소문가

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 - 2.1 By defn: Only differ from G on edges in B.
 - 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''
 - 2.3 Then, $\underline{B'}, \underline{B''}$ are integral since their edges are colored in the new graphs.
- 3. Therefore, the numbers $a^T G(u, v)$, $a^T G(u, v)$ are integral and (from before) less than b + 1.
- 4. Therefore, they are at most *b*.

소리가 소문가 소문가 소문가

- 1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color 1/2. So B is half-integral, and A + C is integral.
- 2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 - 2.1 By defn: Only differ from G on edges in B.
 - 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''
 - 2.3 Then, $\underline{B', B''}$ are integral since their edges are colored in the new graphs.
- 3. Therefore, the numbers $a^T G(u, v)$, $a^T G(u, v)$ are integral and (from before) less than b + 1.
- 4. Therefore, they are at most *b*.
- 5. As G is their average, $a^T G \leq b$, contradicting the assumption $G \notin P^{(i+1)}$.

We need an AWESOME strategy for DELAYER, and we're done!

(4月) イヨト イヨト

We need an AWESOME strategy for DELAYER, and we're done!

- 1. <u>DEFN</u>: A diagonal pair of vertices is any pair $\{2m 1, 2m\}$ for $m \in [2^{k/2-1}]$.
- 2. A diagonal edge is an edge between a diagonal pair of vertices.

We need an AWESOME strategy for DELAYER, and we're done!

- 1. <u>DEFN</u>: A diagonal pair of vertices is any pair $\{2m 1, 2m\}$ for $m \in [2^{k/2-1}]$.
- 2. A diagonal edge is an edge between a diagonal pair of vertices.
- 3. We need the existence of a certain graph with extremal Ramsey properties for DELAYER to use!

<u>CLAIM</u>: There is a complete graph H, all edges colored either red or blue, s.t.

- 1. there is no monochromatic clique of size k,
- 2. above holds even if the colors of diagonal edges are toggled arbitrarily,
- 3. for any diagonal pair of vertices $\{2m 1, 2m\}$ and any vertex a < 2m 1, the color of (a, 2m 1) and (a, 2m) are DIFF

・ロン ・回 と ・ ヨン ・ ヨン

1. For all $i \in [2^{k/2-1}]$ and v < 2i - 1, color (v, 2i - 1) uniformly at random; set (v, 2i) to the opposite

- 1. For all $i \in [2^{k/2-1}]$ and v < 2i 1, color (v, 2i 1) uniformly at random; set (v, 2i) to the opposite
- 2. We want to count the prob that *k*-size subsets have both a BLUE and RED edge that are not between diagonal pairs.

・ロン ・回 と ・ ヨ と ・ ヨ と

- 1. For all $i \in [2^{k/2-1}]$ and v < 2i 1, color (v, 2i 1) uniformly at random; set (v, 2i) to the opposite
- 2. We want to count the prob that *k*-size subsets have both a BLUE and RED edge that are not between diagonal pairs.
- 3. DEFN: K_0 family of sets of k vertices with no diagonal pair
- 4. <u>DEFN</u>: K_1 family of sets of k vertices where (only) the LEAST two vertices are diagonal

Fix $n = 2^{k/2}$. Then,

 $\Pr[H \text{ has a monochromatic } k-\text{clique}]$

$$\leq |K_0|rac{2}{2^{\binom{k}{2}}} + |K_1|rac{2}{2^{\binom{k}{2}-1}} \ \leq rac{2}{2^{\binom{k}{2}}} \left[2^k \binom{n/2}{k} + 2^{k-1} \binom{n/2}{k-1}
ight] < 1.$$

Therefore, some such *H* exists!

イロン イヨン イヨン イヨン

1. In each round, map the new charged vertices (2i - 1, 2i) onto vertices (2i - 1, 2i) of H.

イロン イヨン イヨン イヨン

- 1. In each round, map the new charged vertices (2i 1, 2i) onto vertices (2i 1, 2i) of H.
- 2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)

- 1. In each round, map the new charged vertices (2i 1, 2i) onto vertices (2i 1, 2i) of H.
- 2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
- 3. Color the remaining edges according to H.

イロン イヨン イヨン イヨン

- 1. In each round, map the new charged vertices (2i 1, 2i) onto vertices (2i 1, 2i) of H.
- 2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
- 3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text{def}}{=} 2^{k/2-1}$ rounds.

- 1. In each round, map the new charged vertices (2i 1, 2i) onto vertices (2i 1, 2i) of H.
- 2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
- 3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text{def}}{=} 2^{k/2-1}$ rounds.

THEREFORE: $G_e \subseteq P_0$. So, by the Prot Lemma, $G_{e-1} \subseteq P_1, G_{e-2} \subseteq P_2, \cdots, G_0 \subseteq P_e$.

- 1. In each round, map the new charged vertices (2i 1, 2i) onto vertices (2i 1, 2i) of H.
- 2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
- 3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text{def}}{=} 2^{k/2-1}$ rounds.

THEREFORE: $G_e \subseteq P_0$. So, by the Prot Lemma, $G_{e-1} \subseteq P_1, G_{e-2} \subseteq P_2, \cdots, G_0 \subseteq P_e$.

THEREFORE: Ramsey's theorem has CP Rank at least $e = \Omega(2^k)$.

(日)(4月)(4日)(4日)(日)

Thanks for listening!

・ロン ・部と ・ヨン ・ヨン

Э