Cutting Plane Rank Lower Bound for Ramsey's Theorem

Daniel Apon

University of Maryland - College Park

Proof Complexity and Ramsey's Theorem

1. Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"

Proof Complexity and Ramsey's Theorem

1. Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"
2. What is the relative complexity of proving upper bounds on Ramsey numbers?

Proof Complexity and Ramsey's Theorem

1. Proof Complexity: "How large must proofs of Theorem X in Proof System Y be?"
2. What is the relative complexity of proving upper bounds on Ramsey numbers?
3. Focus on Cutting Plane proofs
3.1 High-dimensional geometric proofs
3.2 IPs vs LPs
3.3 More details soon =)

The Question!

QUESTION:

What is the proof complexity of the propositional statement

$$
r(k, k) \leq 4^{k} ?
$$

The Question!

QUESTION:

What is the proof complexity of the propositional statement $r(k, k) \leq 4^{k}$?

1. This is TRUE and KNOWN (Erdös, Szekeres)

The Question!

QUESTION:

What is the proof complexity of the propositional statement $r(k, k) \leq 4^{k}$?

1. This is TRUE and KNOWN (Erdös, Szekeres)
2. We'd like: An \exp lower bound on proof size w.r.t. formula size

The Question!

QUESTION:

What is the proof complexity of the propositional statement

$$
r(k, k) \leq 4^{k} ?
$$

1. This is TRUE and KNOWN (Erdös, Szekeres)
2. We'd like: An \exp lower bound on proof size w.r.t. formula size
3. We get: An exp lower bound on RANK w.r.t. k

Plan for the Talk

1. Intro to Cutting Plane Proofs

Plan for the Talk

1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game

Plan for the Talk

1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game
3. A Protection Lemma
3.1 Long games \Longrightarrow High CP Rank

Plan for the Talk

1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game
3. A Protection Lemma
3.1 Long games \Longrightarrow High CP Rank
4. The Delayer's Strategy
4.1 Games are long!
4.2 Proof by lo's Method

Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of $A X I O M S$ (e.g. $\vec{a} \cdot \vec{x} \leq b \in A \vec{x} \leq \vec{b}$)

Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A \vec{x} \leq \vec{b}$)
2. Final line: An arithmetically FALSE statement (e.g. $1 \leq 0$)

Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A \vec{x} \leq \vec{b}$)
2. Final line: An arithmetically FALSE statement (e.g. $1 \leq 0$)
3. In between: Anything derivable from previous lines using:
3.1 Inequality Addition
3.2 Scalar Multiplication
3.3 Rounded Division

Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A \vec{x} \leq \vec{b}$)
2. Final line: An arithmetically FALSE statement (e.g. $1 \leq 0$)
3. In between: Anything derivable from previous lines using:
3.1 Inequality Addition
3.2 Scalar Multiplication
3.3 Rounded Division

A CP derivation of a false statement from $A \vec{x} \leq \vec{b}$ is EQUIVALENT to showing " $A \vec{x} \leq \vec{b} \notin S A T$ "

More on Rounded Division

A geometric interpretation...

1. Start at $P \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n}: A \vec{x} \leq \vec{b}\right\}$ for integral A, b

More on Rounded Division

A geometric interpretation...

1. Start at $P \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n}: A \vec{x} \leq \vec{b}\right\}$ for integral A, b
2. Target is P_{I} - the convex hull of $P \cap \mathbb{Z}^{n}$

More on Rounded Division

A geometric interpretation...

1. Start at $P \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n}: A \vec{x} \leq \vec{b}\right\}$ for integral A, b
2. Target is P_{I} - the convex hull of $P \cap \mathbb{Z}^{n}$
3. Add/mult gives linear comb. of earlier inequalities

More on Rounded Division

A geometric interpretation...

1. Start at $P \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n}: A \vec{x} \leq \vec{b}\right\}$ for integral A, b
2. Target is P_{I} - the convex hull of $P \cap \mathbb{Z}^{n}$
3. Add/mult gives linear comb. of earlier inequalities
4. Another option: Derive P^{\prime} from P with rounded division.
4.1 Observe that for all $c \in \mathbb{Z}^{n}, \delta \in \mathbb{R}$,

$$
c^{T} y \leq \delta \text { for all } y \in P \Rightarrow c^{T} x \leq\lfloor\delta\rfloor
$$

Chvátal Rank

1. Define $P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS

Chvátal Rank

1. Define $P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS
2. $\mathrm{THM}: \exists$ integer $r \geq 0$ s.t. $P^{(r)}=P_{l}$.

Chvátal Rank

1. Define $P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS
2. THM: \exists integer $r \geq 0$ s.t. $P^{(r)}=P_{l}$.
3. DEFN: The RANK of P is the min such r

Chvátal Rank

1. Define $P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS
2. THM: \exists integer $r \geq 0$ s.t. $P^{(r)}=P_{l}$.
3. DEFN: The RANK of P is the min such r
4. THM: If $c^{T} x \leq d$ has a CP derivation of depth r beginning $\overline{\text { from }} A x \leq b$ defining a polyhedron P, then the rank of $c^{T} x \leq d$ relative to P is at most r.

Chvátal Rank

1. Define $P=P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS
2. THM: \exists integer $r \geq 0$ s.t. $P^{(r)}=P_{l}$.
3. DEFN: The RANK of P is the min such r
4. THM: If $c^{T} x \leq d$ has a CP derivation of depth r beginning from $A x \leq b$ defining a polyhedron P, then the rank of $c^{T} x \leq d$ relative to P is at most r.
$4.1 \exists$ integral pt inside $c^{T} x \leq d$ with rank $\geq s$ relative to $A x \leq b$ \Rightarrow any CP derivation from $A x \leq b$ has depth $\geq s$

A Prover/Delayer Game

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

"Any graph with 4^{k} vertices has either a clique of size k or an independent set of size k."

A Prover/Delayer Game

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

"Any graph with 4^{k} vertices has either a clique of size k or an independent set of size k."

This is serious action movie material.

Rules of THE GAME

1. Parameter: $k \in \mathbb{N}$
2. Game begins on an uncolored complete graph on $n=4^{k}$ vertices. Players color the edges until...

Rules of THE GAME

1. Parameter: $k \in \mathbb{N}$
2. Game begins on an uncolored complete graph on $n=4^{k}$ vertices. Players color the edges until...
3. PROVER wants to force a monochromatic complete graph on k vertices
4. DELAYER wants todelay!

Rules of THE GAME

1. Parameter: $k \in \mathbb{N}$
2. Game begins on an uncolored complete graph on $n=4^{k}$ vertices. Players color the edges until...
3. PROVER wants to force a monochromatic complete graph on k vertices
4. DELAYER wants todelay!
5. PROVER will eventually win. The interesting question is HOW LONG does it take?

Rules of THE GAME

1. PROVER plays first. All vertices are initially uncharged. C_{i} are the charged vertices after PROVER's $i^{\text {th }}$ move.

Rules of THE GAME

1. PROVER plays first. All vertices are initially uncharged. C_{i} are the charged vertices after PROVER's $i^{\text {th }}$ move.
2. PROVER $i^{\text {th }}$ move:
2.1 CHARGE two new vertices u_{i}, v_{i}
2.2 $\overline{\operatorname{COLOR}}\left(u_{i}, v_{i}\right)$

Rules of THE GAME

1. PROVER plays first. All vertices are initially uncharged. C_{i} are the charged vertices after PROVER's $i^{\text {th }}$ move.
2. PROVER $i^{\text {th }}$ move:
2.1 CHARGE two new vertices u_{i}, v_{i}
2.2 $\overline{\operatorname{COLOR}}\left(u_{i}, v_{i}\right)$
3. DELAYER $i^{\text {th }}$ move:
3.1 For uncolored $\left(w, w^{\prime}\right) \in\left(C_{i} \backslash\left\{u_{i}, v_{i}\right\}\right)^{2}$, COLOR them

Graph Averages

GOAL: Show that Long Games \Rightarrow High Rank

Graph Averages

GOAL: Show that Long Games \Rightarrow High Rank

1. Equate colored graphs with POINTS in high-dim space $1.1\{$ BLUE, NONE, RED $\} \mapsto\left\{0, \frac{1}{2}, 1\right\}$
$1.2 G \in\left\{0, \frac{1}{2}, 1\right\}^{\binom{\left.\left\lvert\, \begin{array}{c}\mid\end{array}\right.\right)}{2} \mapsto G \in[0,1]^{\binom{|V|}{2}} \text {) }}$

Graph Averages

GOAL: Show that Long Games \Rightarrow High Rank

1. Equate colored graphs with POINTS in high-dim space $1.1\{$ BLUE, NONE, RED $\} \mapsto\left\{0, \frac{1}{2}, 1\right\}$ $1.2 G \in\left\{0, \frac{1}{2}, 1\right\}^{\binom{|V|}{2}} \mapsto G \in[0,1]^{\left(\begin{array}{c}\left.\left\lvert\, \begin{array}{c}|v| \\ 2\end{array}\right.\right)\end{array}\right)}$
2. DEFN: The AVERAGE, $\frac{1}{2}\left(G_{1}+G_{2}\right)$, of two graphs G_{1}, G_{2} is the graph $H=\left(V, \frac{E_{1}+E_{2}}{2}\right)$

Protection Sets

DEFN: The PROTECTION SET $S=S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in(V, E)^{2}$ s.t.

Protection Sets

DEFN: The PROTECTION SET $S=S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in(V, E)^{2}$ s.t.

1. The charged part of G is C
2. The charged part of both $G(u, v)$ and $G(u, v)$ is $C \cup\{u, v\}$
3. $G=\frac{1}{2}(G(u, v)+G(u, v))$

Protection Sets

DEFN: The PROTECTION SET $S=S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in(V, E)^{2}$ s.t.

1. The charged part of G is C
2. The charged part of both $G(u, v)$ and $G(u, v)$ is $C \cup\{u, v\}$
3. $G=\frac{1}{2}(G(u, v)+G(u, v))$

Note: For fixed (u, v), the two colored graphs PROVER can choose in the $i^{\text {th }}$ round average to the $(i-1)^{\text {th }}$ round graph

A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of vertices and a charged part of even size. If G has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of vertices and a charged part of even size. If G has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

Intuitively, Long Games \Rightarrow High Rank

Prot Lemma Proof

Consider some G at the start of some round i in the P / D game. Note there are an even number of vertices and charged part of even size.

$$
\text { 1. } G \in P^{(i)} \text { : }
$$

1.1 By constr: For $u, v \notin C_{i}, G$ is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

Prot Lemma Proof

Consider some G at the start of some round i in the P / D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:
1.1 By constr: For $u, v \notin C_{i}, G$ is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.
2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)} \text { : }}$
2.1 By def: We have $a^{T} G>b$ where $a^{T} x \leq b$ has rank $i+1$.

Prot Lemma Proof

Consider some G at the start of some round i in the P / D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:
1.1 By constr: For $u, v \notin C_{i}, G$ is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.
2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)} \text { : }}$
2.1 By def: We have $a^{T} G>b$ where $a^{T} x \leq b$ has rank $i+1$.
2.2 Let $a^{\prime T} x \leq b^{\prime}$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0<r<q$,
2.2.1 $\mathrm{a}^{\prime}[\mathrm{u}, \mathrm{v}]=\mathrm{qa}[\mathrm{u}, \mathrm{v}]$
2.2.2 $b^{\prime}=q b+r$

Prot Lemma Proof

Consider some G at the start of some round i in the P / D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:
1.1 By constr: For $u, v \notin C_{i}, G$ is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.
2. Assume toward a contradiction: $\underline{G \notin P^{(i+1)} \text { : }}$
2.1 By def: We have $a^{T} G>b$ where $a^{T} x \leq b$ has rank $i+1$.
2.2 Let $a^{\prime T} x \leq b^{\prime}$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0<r<q$,
2.2.1 $\mathrm{a}^{\prime}[\mathrm{u}, \mathrm{v}]=\mathrm{qa}[\mathrm{u}, \mathrm{v}]$
2.2.2 $\mathrm{b}^{\prime}=\mathrm{qb}+\mathrm{r}$
2.3 Then, $G \in P^{(i)} \Rightarrow a^{\prime T} G \leq b^{\prime}<q(b+1) \Rightarrow b<a^{T} G<b+1$. By constr: $a^{T} G=b+\frac{1}{2}$.

Prot Lemma Proof

We have: $a^{T} G=b+\frac{1}{2}$

Prot Lemma Proof

We have: $a^{T} G=b+\frac{1}{2}$
Since $a \in \mathbb{Z}^{m}$, then

$$
\sum_{(u, v) \in \mathcal{U}^{2}} a[u, v]+\sum_{u \in \mathcal{U}, w \in \mathcal{C}} a[u, w] \equiv 1 \quad(\bmod 2)
$$

else $a^{T} G$ would be integral.

Prot Lemma Proof

We have: $a^{T} G=b+\frac{1}{2}$
Since $a \in \mathbb{Z}^{m}$, then

$$
\sum_{(u, v) \in \mathcal{U}^{2}} a[u, v]+\sum_{u \in \mathcal{U}, w \in \mathcal{C}} a[u, w] \equiv 1 \quad(\bmod 2)
$$

else $a^{T} G$ would be integral.
Claim: This implies $\exists(u, v) \in \mathcal{U}^{2}$ s.t.

$$
a[u, v]+\sum_{w \in \mathcal{C}} a[u, w]+\sum_{w \in \mathcal{C}} a[v, w] \equiv 1 \quad(\bmod 2)
$$

Proof: Formal proof is a bit lengthy. High-level idea: Suppose not, then can show some fixed part of G has both even and odd size

Prot Lemma Proof

Fix (u, v) as implied by prev.
Look at sum over three groups of edges:

1. (A): all edges between two charged vertices,
2. (B): edges enumerated in defn of (u, v) (those induced in one round of $P / D)$,
3. (C): rest of the edges in G.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.
2.2 Let $a^{T} G(u, v)=A+B^{\prime}+C$ and $a^{T} G(u, v)=A+B^{\prime \prime}+C$ for some $B^{\prime}, B^{\prime \prime}$

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.
2.2 Let $a^{T} G(u, v)=A+B^{\prime}+C$ and $a^{T} G(u, v)=A+B^{\prime \prime}+C$ for some $B^{\prime}, B^{\prime \prime}$
2.3 Then, $\underline{B}^{\prime}, B^{\prime \prime}$ are integral since their edges are colored in the new graphs.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.
2.2 Let $a^{T} G(u, v)=A+B^{\prime}+C$ and $a^{T} G(u, v)=A+B^{\prime \prime}+C$ for some $B^{\prime}, B^{\prime \prime}$
2.3 Then, $\underline{B}^{\prime}, B^{\prime \prime}$ are integral since their edges are colored in the new graphs.
3. Therefore, the numbers $a^{T} G(u, v), a^{T} G(u, v)$ are integral and (from before) less than $b+1$.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.
2.2 Let $a^{T} G(u, v)=A+B^{\prime}+C$ and $a^{T} G(u, v)=A+B^{\prime \prime}+C$ for some $B^{\prime}, B^{\prime \prime}$
2.3 Then, $\underline{B}^{\prime}, B^{\prime \prime}$ are integral since their edges are colored in the new graphs.
3. Therefore, the numbers $a^{T} G(u, v), a^{T} G(u, v)$ are integral and (from before) less than $b+1$.
4. Therefore, they are at most b.

Prot Lemma Proof

1. $|B| \equiv 1(\bmod 2)$, and all $e \in B$ have color $1 / 2$. So B is half-integral, and $A+C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
2.1 By defn: Only differ from G on edges in B.
2.2 Let $a^{T} G(u, v)=A+B^{\prime}+C$ and $a^{T} G(u, v)=A+B^{\prime \prime}+C$ for some $B^{\prime}, B^{\prime \prime}$
2.3 Then, $\underline{B}^{\prime}, B^{\prime \prime}$ are integral since their edges are colored in the new graphs.
3. Therefore, the numbers $a^{T} G(u, v), a^{T} G(u, v)$ are integral and (from before) less than $b+1$.
4. Therefore, they are at most b.
5. As G is their average, $a^{T} G \leq b$, contradicting the assumption $G \notin P^{(i+1)}$.

A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we're done!

A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we're done!

1. DEFN: A diagonal pair of vertices is any pair $\{2 m-1,2 m\}$ for $m \in\left[2^{k / 2-1}\right]$.
2. A diagonal edge is an edge between a diagonal pair of vertices.

A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we're done!

1. DEFN: A diagonal pair of vertices is any pair $\{2 m-1,2 m\}$ for $m \in\left[2^{k / 2-1}\right]$.
2. A diagonal edge is an edge between a diagonal pair of vertices.
3. We need the existence of a certain graph with extremal Ramsey properties for DELAYER to use!

The Magic Graph, H

CLAIM: There is a complete graph H, all edges colored either red or blue, s.t.

1. there is no monochromatic clique of size k,
2. above holds even if the colors of diagonal edges are toggled arbitrarily,
3. for any diagonal pair of vertices $\{2 m-1,2 m\}$ and any vertex $a<2 m-1$, the color of $(a, 2 m-1)$ and $(a, 2 m)$ are DIFF

Io's Method

We show H exists using the Prob Method.

Io's Method

We show H exists using the Prob Method.

1. For all $i \in\left[2^{k / 2-1}\right]$ and $v<2 i-1$, color $(v, 2 i-1)$ uniformly at random; set $(v, 2 i)$ to the opposite

Io's Method

We show H exists using the Prob Method.

1. For all $i \in\left[2^{k / 2-1}\right]$ and $v<2 i-1$, color $(v, 2 i-1)$ uniformly at random; set $(v, 2 i)$ to the opposite
2. We want to count the prob that k-size subsets have both a BLUE and RED edge that are not between diagonal pairs.

lo's Method

We show H exists using the Prob Method.

1. For all $i \in\left[2^{k / 2-1}\right]$ and $v<2 i-1$, color $(v, 2 i-1)$ uniformly at random; set $(v, 2 i)$ to the opposite
2. We want to count the prob that k-size subsets have both a BLUE and RED edge that are not between diagonal pairs.
3. DEFN: K_{0} - family of sets of k vertices with no diagonal pair
4. DEFN: K_{1} - family of sets of k vertices where (only) the LEAST two vertices are diagonal

Io's Method

Fix $n=2^{k / 2}$. Then,
$\operatorname{Pr}[H$ has a monochromatic k-clique $]$

$$
\begin{aligned}
& \leq\left|K_{0}\right| \frac{2}{2^{\binom{k}{2}}}+\left|K_{1}\right| \frac{2}{2^{\binom{k}{2}-1}} \\
& \leq \frac{2}{2^{\binom{k}{2}}}\left[2^{k}\binom{n / 2}{k}+2^{k-1}\binom{n / 2}{k-1}\right]<1 .
\end{aligned}
$$

Therefore, some such H exists!

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.
2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.
2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
3. Color the remaining edges according to H. \square

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.
2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text { def }}{=} 2^{k / 2-1}$ rounds.

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.
2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text { def }}{=} 2^{k / 2-1}$ rounds.

THEREFORE: $G_{e} \subseteq P_{0}$. So, by the Prot Lemma, $G_{e-1} \subseteq P_{1}, G_{e-2} \subseteq P_{2}, \cdots, G_{0} \subseteq P_{e}$.

Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices $(2 i-1,2 i)$ onto vertices $(2 i-1,2 i)$ of H.
2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)
3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for $e \stackrel{\text { def }}{=} 2^{k / 2-1}$ rounds.

THEREFORE: $G_{e} \subseteq P_{0}$. So, by the Prot Lemma, $G_{e-1} \subseteq P_{1}, G_{e-2} \subseteq P_{2}, \cdots, G_{0} \subseteq P_{e}$.

THEREFORE: Ramsey's theorem has CP Rank at least $e=\Omega\left(2^{k}\right)$.

Thanks for listening!

