
Canonical Ramsey’s Theorem (finite version)
Exposition by William Gasarch

1 Introduction

We present the best proof of Can Ramesy for Graphs in terms of bounds.
We will need the one-dom caseof it:

Lemma 1.1 Let COL be any coloring of [(m − 1)2 + 1]. Then there exists
either a homog set of size m or a rainbow set of size m.

2 A Premise that Yields a Rainbow Set

The next definition and lemmas gives a way to get a rainbow set under some
conditions.

Def 2.1 Let COL be a coloring of
(
[m]
2

)
. If c is a color and v ∈ [m] then

degc(v) is the number of c-colored edges with an endpoint in v.

The following theorem is due to Babai [2]. We include the proof since the
paper is not available on-line and will eventually be lost to history.

Lemma 2.2 Let m ≥ 3. Let COL be a coloring of
(
[m]
2

)
. If for all v ∈ [m]

and all colors c degc(v) ≤ 1 then there exists a rainbow set of size ≥ (2m)1/3.

Proof:
Let X be a maximal rainbow set. This means that,

(∀y ∈ [m]−X)[X ∪ {y} is not a rainbow set].

Let y ∈ [m]−X. Why is y /∈ X? One of the following must occur:

1. There exists u, u1, u2 ∈ X such that u1 6= u2 and COL(y, u) = COL(u1, u2).
(It is possible for u = u1 or u = u2.)

2. There exists u1 6= u2 ∈ X such that COL(y, u1) = COL(y, u2). This
cannot happen since then y has some color degree ≥ 2.
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We map [m]−X to X ×
(

X
2

)
by mapping y ∈ [m]−X to (u, {u1, u2}) as

indicated in item 1 above. This map is injective since if y1 and y2 both map
to (u, {u1, u2}) then COL(y1, u) = COL(y2, u).

This map has domain of size n − |X| and co-domain of size |X|
(|X|

2

)
.

Hence

m− |X| ≤ |X|
(
|X|
2

)
= |X|2(|X| − 1)/2 =

|X|3 − |X|2

2
≤ |X|3

2
− |X|

m ≤ |X|3

2
.

|X| ≥ (2m)1/3.

Alon, Lefmann, and Rodl [1] have obtained a slight improvement and also
showed that it cannot be improved past that.

Lemma 2.3 Let m ≥ 3.

1. Let COL be a coloring of
(
[m]
2

)
. If for all v ∈ [m] and all colors c,

degc(v) ≤ 2 then there exists a rainbow set of size ≥ Ω((m log m)1/3).

2. There exists a coloring of
(
[m]
2

)
. such that for all v ∈ [m] and all colors

c, degc(v) ≤ 1 and all rainbow sets are of size ≤ O((m log m)1/3).

3 Main Theorem

We remind the reader of the definition of degc and also add the definitions
of degL

c and degR
c .

Def 3.1 Let COL be a coloring of
(
[m]
2

)
. Let c be a color and let v ∈ [m]

1. degR
c (v) is the number of c-colored edges (v, u) with v < u.

2. degR
c (v) is the number of c-colored edges (v, u) with u < v.

3. A bad triple is a triple a, b, c such that a, b, c does not form a rainbow
K3.
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The next two lemmas show us how to, in some cases, reduce the number
of bad triples.

Lemma 3.2 Let COL be a coloring of
(
[m]
2

)
such that, for every color c and

vertex v, degc(v) ≤ d. Then the number of bad triples is less than dm2

2
.

Proof: Let b be the number of bad triples. We upper bound b by summing
over all v that are the point of the triple with two same-colored edges coming
out of it.

b ≤
∑
v∈[m]

∑
c∈N

Num of bad triples {v, u1, u2} with COL(v, u1) = COL(v, u2) = c .

(Note that we are not assuming v < u1, u2.)
We bound the inner summation. Since v is of degree m − 1 we can

renumber the colors as 1, 2, . . . ,m−1 (some of the degc(v) may be 0). Hence

b ≤
∑
v∈[m]

m−1∑
c=1

(
degc(v)

2

)
.

Note that
∑m

c=1 degc(v) = m − 1 ≤ m and (∀c)[degc(v) ≤ d]. The inner
sum is maximized when d = deg1(v) = deg2(v) = · · · = degm/d(v) and the
rest of the degc(v)’s are 0. Hence we have

b ≤
∑
v∈[m]

m∑
c=1

(
degc(v)

2

)
≤

∑
v∈[m]

(m/d)

(
d

2

)
< m

m

d

d2

2
=

dm2

2
.

Lemma 3.3 Let COL be a coloring of
(
[m]
2

)
that has b bad triples. Let 1 ≤

m′ ≤ m. There exists an m′-sized set of vertices with ≤ b
(

m′

m

)3
bad triples.

Proof: Pick a set X of size m′ at random. Let E be the expected number
of bad triples. Note that

E =
∑

{v1,v2,v3} bad

Prob that {v1, v2, v3} ⊆ X .
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Let {v1, v2, v3} be a bad triple. The probability that all three nodes are
in X is bounded by(

m−3
m′−3

)(
m
m′

) =
m′(m′ − 1)(m′ − 2)

m(m− 1)(m− 2)
≤

(
m′

m

)3

.

Hence the expected number of bad triples is ≤ b(m′

m
)3. Therefore there

must exist some X that has ≤ b(m′

m
)3 bad triples.

Note 3.4 The above theorem presents the user with an interesting tradeoff.
She wants a large set with few bad triples. If m′ is large then you get a large
set, but it will have many bad triples. If m′ is small then you won’t have
many bad triples, but m′ is small. We will need a Goldilocks-m′ that is just
right.

Now we can prove the theorem!

Theorem 3.5 For all k the following hold.

1.

ER(k) ≤
(

k9

16

)2(k−2)2+1

≤ 218k2 lg(k).

2.

ER(k) ≤
(

9k6

16

)2(k−2)2+1

≤ 212k2 lg(k).

Proof:
We will determine n later. We will have parameters m, m′, m′′, δ, s, t which

we will choose later.
Intuition: In the usual proofs of Ramsey’s Theorem we take a vertex v

and see which of such that degR
RED(v) or degR

BLUE is large. One of them must
be at least half of the size of the vertices still in play. Here we change this
up:

• Instead of taking a particular vertex v we ask if there is any v and any
color c such that either degL

c (v) or degR
c (v) is large. We hope to do this

until either we have (k − 2)2 + 1 elements that have a large degL
c (v)
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for some c, or (k− 2)2 + 1 elements that have a large degR
c (v) for some

c. We will then apply Lemma 1.1. (We take care of the extra point
we need a different way.) We will need to iterate this process at most
2(k − 2)2 + 1 times.

• What is large? Similar to the proof of Ramsey’s theorem it will be a
fraction of what is left, a fraction δ which we will pick later. Unlike the
proof of Ramsey’s theorem δ will depend on k.

• In the proof of Ramsey’s theorem we were guaranteed that one of
degRED(v) or degBLUE(v) was large. Here we have no such guaran-
tee. We may fail. In that case something else happens and leads to a
rainbow set!

Formally the construction will only use the points {2, . . . , n− 1} so that
we will have available a point bigger than all the points we finally have or
smaller than. We ignore this in the construction and the analysis but we will
point it out when we need it.
CONSTRUCTION
Phase 1:
Stage 0:

1. V L
0 = V R

0 = ∅. The set V L
0 will be vertices such that the edges from

them to all vertices to their Left are the same color. Similar for V R
0 .

2. N0 = [n]. COL′ is not defined on any points.

Stage i: Assume that V L
i−1, V R

i−1, and Ni−1 are already defined.

1. If there exists x ∈ Ni−1 and c a color such that degR
c (x) ≥ δNi−1 then

do the following:

V R
i = V R

i−1 ∪ {x}
V L

i = V L
i−1

Ni = {v ∈ Ni−1 : x < v ∧ COL(x, v) = c}
xi = x

COL′(xi) = c

Note that |Ni| ≥ δ|Ni−1|. If |V R
i | = (k − 2)2 + 1 then goto Phase 2a.
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2. If there exists x ∈ Ni−1 and c a color such that degL
c (x) ≥ δNi−1 then

do the following:

V R
i = V R

i−1

V L
i = V L

i−1 ∪ {x}
Ni = {v ∈ Ni−1 : v < x ∧ COL(x, v) = c}
xi = x

COL′(xi) = c

Note that |Ni| ≥ δ|Ni−1|. If |V L
i | = (k − 2)2 + 1 then goto Phase 2b.

3. If neither case 1 or case 2 holds then goto Phase 2c.

End of Phase 1
Since we goto Phase 2 if either |V R

i | = (k− 2)2 + 1 or |V L
i | = (k− 2)2 + 1

we iterate the above process at most 2(k−2)2+1 times. Let s = 2(k−2)2+1.
Phase 2a: Restrict COL′ to V R

i and apply Lemma 1.1 to obtain that one
of the following occurs.

1. There is a a set H ′ ⊆ V R
i , homog relative to COL′, of size k−1. Recall

that n has not been used at all. It is easy to see that H = H ′ ∪ {n} is
homog relative to COL.

2. There is a a set H ′ ⊆ V R
i , rainbow relative to COL′, of size k−1. Recall

that n has not been used at all. It is easy to see that H = H ′ ∪ {n} is
min-homog relative to COL.

We need to be able to carry out the construction for s stages. Note that
after s stages |Ns| ≥ δsn. We need this to be ≥ 1. Hence we need

FIRST CONSTRAINT:

δ ≥
(

1

n

)1/s

.

If you got to Phase 2a you do NOT need to goto Phase 2b or 2c.
End of Phase 2a:

Phase 2b: You got here because |V L
i | = (k−2)2 +1. This is similar to Phase

2a so we omit it. We note that in this case you obtain either a homog set or
a max-homog set.

6



End of Phase 2b:
Phase 2c:

Assume that when you got here N = Ni was of size m. The largest stage
this could happen at was s− 1. Hence we need

SECOND CONSTRAINT:

m ≤ δs−1n.

We take

n =
1

δs−1
n.

This will also satisfy FIRST CONSTRAINT.
You got here because for all v ∈ N , for all colors c, degL

c (v) ≤ δm
and degR

c (v) ≤ δm. Hence degc(v) ≤ 2δm. By renumbering we assume
that N = {1, . . . ,m} and that the colors are {1, . . . ,m}. Let COL be the
coloring restricted to

(
[m]
2

)
. Note that, for all vertices v ∈ [m], for all colors

c, degc(v) ≤ 2δm.
Note also that, for any vertex v ∈ [m],

m− 1 < m =
m∑

c=1

degc(v) ≤
m∑

c=1

δm = m2δ.

Hence
THIRD CONSTRAINT:

δ ≥ 1

m
.

Note that COL is a coloring of
(
[m]
2

)
such that for every v and c, degc(v) ≤

2δm. Hence, by Lemma 3.2, there are at most

2δm×m2

2
= δm3

bad triples.
By Lemma 3.3 there exists a subset X of size m′ that has at most

δm3 ×
(

m′

m

)3

= δ(m′)3

bad triples.
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We have two options for setting m′ which lead to the different upper
bounds. The first option gives a simpler proof and one less parameter; how-
ever, the second option gives a better bound. We admit here that the im-
provement of the upper bound is marginal.
Option 1: Set m′ and δ so that there are no bad triples. Hence we need

δ(m′)3 < 1

We now have a set X of size m′ with no bad triples. We will use Lemma 2.2
on this set, hence we take

m′ =
k3

2
.

Hence

δ =
2

m′3
=

16

k9
.

By THIRD CONSTRAINT we need

δ ≥ 1

m
.

We take

m =
1

δ
=

k9

16
.

By the SECOND CONSTRAINT

m ≤ δs−1n.

n =
m

δs−1
.

Since δ = 1
m

we can express n in terms of m.

n = ms =

(
k9

16

)s

=

(
k9

16

)2(k−2)2+1

.

And we are DONE— with Option 1.
Option 2. We set m′ such that the number of bad triples is so small that
we can just remove one point from each. This will lead to a better value of
n. Recall that the number of bad triples is δ(m′)3.
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We want the number of bad triples to be so small that if we just toss out
one vertex from each we still have many (that is, m′′) vertices.

FOURTH CONSTRAINT:

m′ − δ(m′)3

3
≥ m′′.

By renumbering we can assume the m′′ vertices are {1, . . . ,m′′}. Let COL
be the coloring restricted to

(
[m′′]

2

)
. Note that there are NO bad triples. By

Lemma 2.2 there exists a rainbow set of size (2m′′)1/3. Since we want this to
be ≥ k we have our

FIFTH CONSTRAINT:

m′′ ≥ k3

2
.

End of Phase 2c
We now collect up all the constraints and see how to satisfy them in a

way that minimizes n.
List of Constraints

1.

δ ≥
(

1

n

)1/s

This constraint is implied by the next one so we do nothing.

2.

δ ≥
(

m

n

)1/(s−1)

.

We satisfy this by taking

n =
m

δs−1

This constraint is now satisfied; however, we need to know what m and
δ are.

3.

δ ≥ 1

m
.

We will take

m =
1

δ
.

This constraint is now satisfied; however, we need to know what δ is.
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4.

m′ − δ

3
(m′)3 ≥ m′′.

δ ≤ 3m′ − 3m′′

(m′)3

Since we want δ as large as possible we will take δ to equal this upper
bound. This constraint is now satisfied; however, we need to know
what m′, m′′ are.

5.

m′′ ≥ k3

2
.

We take m′′ equal to this lower bound. This constraint is now satisfied.

End of List of Constraints

m′′ =
k3

2
.

What should m′ and δ be? We want to maximize δ. Recall that

δ =
3m′ − 3m′′

(m′)3
.

We pick the value of 1 ≤ m′ ≤ m that maximizes δ. Simple calculus
reveals that this value is m′ = 1.5m′′. Hence

m′ = 1.5m′′ =
1.5k3

2
.

δ =
3m′ − 3m′′

(m′)3
=

4.5m′′ − 3m′′

(1.5m′′)3
=

1.5m′′

(1.5m′′)3
=

1

(1.5m′′)2

Note that

(1.5m′′)2 =

(
1.5k3

2

)2

=

(
3k3

4

)2

=
9k6

16
.

Hence

δ =
16

9k6
.
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Hence

m =
1

δ
=

9k6

16
.

We now know m and δ so we can find n. Since m = 1
δ

we express n in
terms of m and then k.

n =
m

δs−1
= ms =

(
9k6

16

)s

=

(
9k6

16

)2(k−2)2+1

.

Note 3.6 Lemma 2.3 can be used to very slightly improve Theorem 3.5. We
leave this to the reader.

How does the upper bound in Theorem 3.5 compare to what is known?
The only bound known is ER3 = 4 [3]. By contrast Theorem 3.5 yields

ER(3) ≤
(

9× 36

16

)3

=
327

212
∼ 1.8× 109.
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