Computability Theory and Ramsey Theory

An Exposition by William Gasarch

All of the results in this document are due to Jockusch [1].

1 A Computable Coloring with NO Infinite c.e. Homog Sets

All of the results in this

Notation 1.1

- 1. M_1, M_2, \ldots is a standard list of Turing Machines.
- 2. Note that from e we can extract the code for M_e .
- 3. $M_{e,s}(x)$ means that we run M_e for s steps.
- 4. W_e is the domain of M_e , that is,

 $W_e = \{x \mid (\exists s) [M_{e,s}(x) \downarrow].$

Note that W_1, W_2, \ldots is a list of ALL c.e. sets.

5.

$$W_{e,s} = \{ x \mid M_{e,s}(x) \downarrow \}.$$

Theorem 1.2 There exists a computable $COL : \binom{N}{2} \rightarrow [2]$ such that there is NO infinite c.e. homog set.

Proof: We construct $COL : \binom{N}{2} \to [2]$ to satisfy the following requirements (NOTE- *requirements* is the most important word in computability theory.) $R_e: W_e \text{ infinite } \implies W_e \text{ NOT a homog set }.$

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything.

Stage s: We define COL(0, s), ..., COL(s - 1, s). For e = 0, 1, ..., s:

If this occurs:

 $(\exists x, y \leq s-1)[x, y \in W_{e,s} \land COL(x, s), COL(y, s) \text{ undefined }]$

then take the LEAST two x, y for which this is the case and do the following:

- COL(x,s) = RED
- COL(y, s) = BLUE.

(Note that IF $s \in W_e$ (which we do not know at this time) then R_e would be satisfied.)

After you to through all of the $0 \le e \le s$ define all other COL(x, y) where $0 \le x < y \le s$ that have not been defined by COL(x, y) = RED. This is arbitrary. The important things is that ALL COL(x, s) where $0 \le x \le s - 1$ are now defined. This is why COL is computable— at stage swe have defined all COL(x, y) with $0 \le x < y \le s$.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.

For pedagogue we first look at R_1 .

If W_1 is finite then R_1 is satisfied.

Assume W_1 is infinite. We show that R_1 is satisfied. Let x < y be the least two elements in

 W_1 . Let s_0 be the least number such that $x, y \in W_{1,s_0}$ Note that, for ALL $s \ge s_0$ you will have COL(x, s) = RED COL(y,s) = BLUE

Since W_1 is infinite there is SOME $s \ge s_0$ with $s \in W_e$. Hence $x, y, s \in W_1$ and show that W_1 is NOT homogenous.

Can we show R_2 is satisfied the same way? Yes but with a caveat- we won't use the least two elements of W_2 . We'll use the least two elements of W_2 that are bigger than the least two elements of W_1 . We now do this rigorously and more generally.

Claim: For all e, R_e is satisfied:

Proof: Fix e. If W_e is finite then R_e is satisfied.

Assume W_e is infinite. We show that R_e is satisfied. Let $x_1 < x_2 < \cdots < x_{2e}$ be the first (numerically) 2e elements of W_e . Let s_0 be the least number such that

- $x_1, \ldots, x_{2e} \in W_{e,s_0}$, and
- For all $x \in \{x_1, \ldots, x_{2e}\}$, for all $1 \le i \le e-1$, if $x \in W_i$ then $x \in W_{i,s_0}$.

KEY: for all $s \ge s_0$, during stage s, the requirements R_1, \ldots, R_{e-1} may define COL(x, s) for some of the $x \in \{x_1, \ldots, x_{2e}\}$. But they will NOT define COL(x, s) for ALL of those x. Why? Because R_i only defines COL(x, s) for at most TWO of those x's, and there are e - 1 such i, so at most 2e - 2 of those x's have COL(x, s) defined. Hence there will exist x, y such that R_e gets to define COL(x, s) and COL(y, s). Furthermore, they will always be the SAME x, y since the R_i with i < e have already made up their minds about the x in $\{x_1, \ldots, x_{2e}\}$.

UPSHOT: There exists $x, y \in W_e$ such that, for all $s \ge s_0$,

COL(x,s) = RED

COL(y,s) = BLUE

Since W_e is infinite there is SOME $s \ge s_0$ with $s \in W_e$. Hence $x, y, s \in W_e$ and show that W_e is NOT homogenous.

2 A Computable Coloring with NO c.e.-in-K Homog Sets

Notation 2.1

- If A is a c.e. set, say A is the domain of M, then A_s is {x ≤ s | M_{e,s}(x) ↓}. Note that, given s, one can compute A_s.
- 2. $M_1^{()}, M_2^{()}, \ldots$ is a standard list of oracle Turing Machines.
- 3. Note that from e we can extract the code for $M_e^{()}$.
- 4. If A is a c.e. set then $M_{e,s}^{A_s}(x)$ means that we run $M_e^{()}$ for s steps and using A_s for the oracle.
- 5. If A is c.e. then W_e^A is the domain of M_e^A .

$$W_e^A = \{x \mid (\exists s) [M_{e,s}^{A_s}(x) \downarrow].$$

Note that W_1^K, W_2^K, \ldots is a list of ALL c.e-in-K sets.

6.

$$W_{e,s}^{A_s} = \{ x \mid M_{e,s}^{A_s}(x) \downarrow .$$

Theorem 2.2 There exists $COL : \binom{N}{2} \rightarrow [2]$ such that there is NO infinite c.e-in-K. homog set.

Proof sketch: This will be a HW. But note that its very similar to the proof of Theorem 1.2— if W_e^K is infinite then eventually $W_{e,s}^{K_s}$ will settle down on its first 2e elements.

3 A Computable Coloring with NO Σ_2 Homog Sets

We state equivalences of both c.e. and c.e.-in-K. We leave the proofs to the reader.

Theorem 3.1 Let A be a set. The following are equivalent:

- 1. There exists e such that $A = W_e$. (A is c.e.)
- 2. There exists a decidable R such that

$$A = \{x \mid (\exists y) [(x, y) \in R].$$

(A is Σ_1 .)

3. There exists e such that

$$A = \{ x \mid (\exists y, s) [M_{e,s}(y) = x \}.$$

(This is the origin of the phrase 'computably ENUMERABLE.)

Theorem 3.2 Let A be a set. The following are equivalent:

- 1. There exists e such that $A = W_e^K$. (A is c.e.-in-K.)
- 2. There exists a decidable-in-K R such that

$$A = \{x \mid (\exists y)[(x, y) \in R].$$

(A is Σ_1^K .)

3. There exists e such that

$$A = \{ x \mid (\exists y, s) [M_{e,s}^{K}(y) = x \}.$$

(This is the origin of the phrase 'computably ENUMERABLE-in-K.)

We also need to know that K is quite powerful:

Def 3.3 If A, B are sets then $A \leq_m B$ means that there exists a computable f such that

$$x \in A \iff f(x) \in B.$$

We leave the proof of the following to the reader.

Theorem 3.4 If A is c.e. then $A \leq_m K$.

The key use of the above theorem is that we can phrase Σ_1 questions as queries to K.

Theorem 3.5 $A \in \Sigma_2$ iff A is c.e.-in-K.

Proof:

1) $A \in \Sigma_2$ implies A is c.e.-in-K:

If $A \in \Sigma_2$ then there exists a TM R that always converges such that

$$A = \{x \mid (\exists y)(\forall z)[R(x, y, z) = 1]\}.$$

Let M^K be the TM that does the following:

1. Input(x, y).

2. Ask $K(\forall z)[R(x, y, z) = 1]$. (Can rephrase as $(\exists z)[R(x, y, z) = 0]$.)

3. If YES answer YES, if NO then answer NO.

$$A = \{x \mid (\exists y)[M^{K}(x, y) = 1]\}$$

Hence A is c.e.-in-K.

2) A c.e.-in-K implies $A \in \Sigma_2$.

A is c.e.-in-K. So

$$A = W_e^K = \{x \mid (\exists s)(\forall t) [t \ge s \implies x \in W_{e,t}^{K_t}]\}.$$

So A is Σ_2 .

Theorem 3.6 There exists $COL : \binom{N}{2} \to [2]$ such that there is NO infinite Σ_2 homog set.

Proof: Combine Theorems 2.2 and 3.5. Note that we only need one part of the implication in Theorem 3.5.

4 Every Computable Coloring has an Infinite Π_2 Homog set

We obtain this with a modification of the usual proof of Ramsey's theorem. the key is that we don't really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring $COL : \binom{N}{2} \to [2]$ there is an infinite Π_2 homog set.

Proof:

We are given computable $COL : \binom{N}{2} \to [2].$

CONSTRUCTION of x_1, x_2, \ldots and c_1, c_2, \ldots

NOTE: at the end of stage s we might have x_1, \ldots, x_i defined where i < s. We will not try to keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do so in fits and starts.

 $x_1 = 1$

 $c_1 = RED$ We are guessing. We might change our mind later

Let $s \ge 2$, and assume that x_1, \ldots, x_{s-1} and c_1, \ldots, c_{s-1} are defined.

1. Ask K Does there exists $x \ge x_{s-1}$ such that, for all $1 \le i \le s-1$, $COL(x_i, x) = c_i$?

2. If YES then (using that COL is computable) find the least such x.

$$x_i = x$$

$$c_i = RED$$
 We are guessing. We might change our mind later

We have implicitly tossed out all of the numbers between x_{i-1} and x_i .

- 3. If NO then we ask *K* how far back we can go. More rigorously we ask the following sequence of questions until we get a YES.
 - Does there exists $x \ge x_{s-1}$ such that, for all $1 \le i \le s-2$, $COL(x_i, x) = c_i$?
 - Does there exists $x \ge x_{s-1}$ such that, for all $1 \le i \le s-3$, $COL(x_i, x) = c_i$?
 - :
 - Does there exists $x \ge x_{s-1}$ such that, for all $1 \le i \le 2$, $COL(x_i, x) = c_i$?
 - Does there exists $x \ge x_{s-1}$ such that, for all $1 \le i \le 1$, $COL(x_i, x) = c_i$?

(One of these must be a YES since (1) if $c_1 = RED$ and there are NO red edges coming out of x_1 then there must be an infinite number of BLUE edges, and (2) if c_1 =BLUE its because there are only a finite number of RED edges coming out of x_1 so there are an infinite number of BLUE edges. Let i_0 be such that There exists $x \ge x_{s-1}$ such that, for all $1 \le i \le i_0$, $COL(x_i, x) = c_i$) Do the following:

- (a) Change the color of c_{i+1} . (We will later see that this change must have been from RED to BLUE.
- (b) Wipe out $x_{i+2}, ..., x_{s-1}$.
- (c) Search for the $x \ge x_{s-1}$ that the question asked says exist.
- (d) x_{i+2} is now x.

(e) c_{i+2} is now RED.

END OF CONSTRUCTION of $x_1, x_2 \dots$ and c_1, c_2, \dots

We need to show that there is a Π_2 homog set.

Let X be the set of x_i that are put on the board and stay on the board.

Let R be the set of $x_i \in X$ whose final color is RED.

Claim 1: Once a number turns from RED to BLUE it can't go back to RED again.

Proof:

If a number is turned BLUE its because there are only a finite number of RED edges coming out of it. Hence there must be an infinite number of BLUE edges coming out of it. Hence it will never change color (though it may be tossed out).

End of Proof

Claim 1: $X, R \in \Pi_2$.

Proof:

We show that $\overline{X} \in \Sigma_2$. In order to NOT be in X you must have, at some point in the construction, been tossed out.

 $\overline{X} = \{x \mid (\exists x) \mid a \text{ stage } s \text{ of the construction } x \text{ was tossed out } \}.$

Note that the condition is computable-in-K. Hence \overline{X} is c.e.-in-K. By Theorem 3.5 $\overline{X} \in \Sigma_2$.

We show that $\overline{R} \in \Sigma_2$. In order to NOT be in R you must have to either NOT be in X or have been turned blue. Note that once you turn at some point in the construction, been tossed out.

 $\overline{R} = \overline{X} \cup \{x \mid (\exists x) [\text{ at stage } s \text{ of the construction } x \text{ was turned BLUE}] \}.$

Recall that Σ_2 is closed under complementation. So we only need to show that the other unionand is in Σ_2 . Note that the condition is computable-in-K. Hence \overline{R} is c.e.-in-K. By Theorem 3.5 $\overline{R} \in \Sigma_2.$

End of Proof

There are two cases:

- 1. If R is infinite then R is an infinite homog set that is Π_2 .
- 2. If R is finite then B is X minus a finite number of elements. Since X is Π_2 , B is Π_2 .

References

[1] C. Jockusch. Ramsey's theorem and recursion theory. *Journal of Symbolic Logic*, 37(2):268–280, 1972. http://www/jstor.org/pss/2272972.