Computability Theory and Ramsey Theory

An Exposition by William Gasarch
All of the results in this document are due to Jockusch [1].

1 A Computable Coloring with NO Infinite c.e. Homog Sets

All of the results in this

Notation 1.1

1. M_{1}, M_{2}, \ldots is a standard list of Turing Machines.
2. Note that from e we can extract the code for M_{e}.
3. $M_{e, s}(x)$ means that we run M_{e} for s steps.
4. W_{e} is the domain of M_{e}, that is,

$$
W_{e}=\left\{x \mid(\exists s)\left[M_{e, s}(x) \downarrow\right] .\right.
$$

Note that W_{1}, W_{2}, \ldots is a list of ALL c.e. sets.
5.

$$
W_{e, s}=\left\{x \mid M_{e, s}(x) \downarrow\right\} .
$$

Theorem 1.2 There exists a computable COL : $\binom{N}{2} \rightarrow[2]$ such that there is NO infinite c.e. homog set.

Proof: We construct $C O L:\binom{N}{2} \rightarrow[2]$ to satisfy the following requirements (NOTE- requirements is the most important word in computability theory.)

$$
R_{e}: W_{e} \text { infinite } \Longrightarrow W_{e} \text { NOT a homog set } .
$$

CONSTRUCTION OF COLORING

Stage 0: $C O L$ is not defined on anything.
Stage s: We define $\operatorname{COL}(0, s), \ldots, C O L(s-1, s)$. For $e=0,1, \ldots, s$:
If this occurs:

$$
(\exists x, y \leq s-1)\left[x, y \in W_{e, s} \wedge C O L(x, s), C O L(y, s) \text { undefined }\right]
$$

then take the LEAST two x, y for which this is the case and do the following:

- $C O L(x, s)=R E D$
- $C O L(y, s)=B L U E$.
(Note that IF $s \in W_{e}$ (which we do not know at this time) then R_{e} would be satisfied.)
After you to through all of the $0 \leq e \leq s$ define all other $C O L(x, y)$ where $0 \leq x<y \leq s$ that have not been defined by $C O L(x, y)=R E D$. This is arbitrary. The important things is that ALL $C O L(x, s)$ where $0 \leq x \leq s-1$ are now defined. This is why $C O L$ is computable- at stage s we have defined all $C O L(x, y)$ with $0 \leq x<y \leq s$.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.
For pedagogue we first look at R_{1}.
If W_{1} is finite then R_{1} is satisfied.
Assume W_{1} is infinite. We show that R_{1} is satisfied. Let $x<y$ be the least two elements in W_{1}. Let s_{0} be the least number such that $x, y \in W_{1, s_{0}}$ Note that, for ALL $s \geq s_{0}$ you will have $C O L(x, s)=R E D$

$$
C O L(y, s)=B L U E
$$

Since W_{1} is infinite there is $\operatorname{SOME} s \geq s_{0}$ with $s \in W_{e}$. Hence $x, y, s \in W_{1}$ and show that W_{1} is NOT homogenous.

Can we show R_{2} is satisfied the same way? Yes but with a caveat- we won't use the least two elements of W_{2}. We'll use the least two elements of W_{2} that are bigger than the least two elements of W_{1}. We now do this rigorously and more generally.

Claim: For all e, R_{e} is satisfied:
Proof: Fix e. If W_{e} is finite then R_{e} is satisfied.
Assume W_{e} is infinite. We show that R_{e} is satisfied. Let $x_{1}<x_{2}<\cdots<x_{2 e}$ be the first (numerically) $2 e$ elements of W_{e}. Let s_{0} be the least number such that

- $x_{1}, \ldots, x_{2 e} \in W_{e, s_{0}}$, and
- For all $x \in\left\{x_{1}, \ldots, x_{2 e}\right\}$, for all $1 \leq i \leq e-1$, if $x \in W_{i}$ then $x \in W_{i, s_{0}}$.

KEY: for all $s \geq s_{0}$, during stage s, the requirements R_{1}, \ldots, R_{e-1} may define $C O L(x, s)$ for some of the $x \in\left\{x_{1}, \ldots, x_{2 e}\right\}$. But they will NOT define $C O L(x, s)$ for ALL of those x. Why? Because R_{i} only defines $C O L(x, s)$ for at most TWO of those x 's, and there are $e-1$ such i, so at most $2 e-2$ of those x 's have $C O L(x, s)$ defined. Hence there will exist x, y such that R_{e} gets to define $C O L(x, s)$ and $C O L(y, s)$. Furthermore, they will always be the SAME x, y since the R_{i} with $i<e$ have already made up their minds about the x in $\left\{x_{1}, \ldots, x_{2 e}\right\}$.

UPSHOT: There exists $x, y \in W_{e}$ such that, for all $s \geq s_{0}$,
$C O L(x, s)=R E D$
$C O L(y, s)=B L U E$
Since W_{e} is infinite there is $\operatorname{SOME} s \geq s_{0}$ with $s \in W_{e}$. Hence $x, y, s \in W_{e}$ and show that W_{e} is NOT homogenous.

2 A Computable Coloring with NO c.e.-in- K Homog Sets

Notation 2.1

1. If A is a c.e. set, say A is the domain of M, then A_{s} is $\left\{x \leq s \mid M_{e, s}(x) \downarrow\right\}$. Note that, given s, one can compute A_{s}.
2. $M_{1}^{()}, M_{2}^{()}, \ldots$ is a standard list of oracle Turing Machines.
3. Note that from e we can extract the code for $M_{e}^{()}$.
4. If A is a c.e. set then $M_{e, s}^{A_{s}}(x)$ means that we run $M_{e}^{()}$for s steps and using A_{s} for the oracle.
5. If A is c.e. then W_{e}^{A} is the domain of M_{e}^{A}.

$$
W_{e}^{A}=\left\{x \mid(\exists s)\left[M_{e, s}^{A_{s}}(x) \downarrow\right] .\right.
$$

Note that $W_{1}^{K}, W_{2}^{K}, \ldots$ is a list of ALL c.e-in- K sets.
6.

$$
W_{e, s}^{A_{s}}=\left\{x \mid M_{e, s}^{A_{s}}(x) \downarrow .\right.
$$

Theorem 2.2 There exists COL: $\binom{N}{2} \rightarrow[2]$ such that there is NO infinite c.e-in-K. homog set.

Proof sketch: This will be a HW. But note that its very similar to the proof of Theorem 1.2-if W_{e}^{K} is infinite then eventually $W_{e, s}^{K_{s}}$ will settle down on its first $2 e$ elements.

3 A Computable Coloring with NO Σ_{2} Homog Sets

We state equivalences of both c.e. and c.e.-in- K. We leave the proofs to the reader.

Theorem 3.1 Let A be a set. The following are equivalent:

1. There exists e such that $A=W_{e}$. (A is c.e.)
2. There exists a decidable R such that

$$
A=\{x \mid(\exists y)[(x, y) \in R] .
$$

(A is Σ_{1}.)
3. There exists e such that

$$
A=\left\{x \mid(\exists y, s)\left[M_{e, s}(y)=x\right\}\right.
$$

(This is the origin of the phrase 'computably ENUMERABLE.)

Theorem 3.2 Let A be a set. The following are equivalent:

1. There exists e such that $A=W_{e}^{K}$. (A is c.e.-in-K.)
2. There exists a decidable-in- $K R$ such that

$$
A=\{x \mid(\exists y)[(x, y) \in R] .
$$

(A is Σ_{1}^{K}.)
3. There exists e such that

$$
A=\left\{x \mid(\exists y, s)\left[M_{e, s}^{K}(y)=x\right\}\right.
$$

(This is the origin of the phrase 'computably ENUMERABLE-in-K.)

We also need to know that K is quite powerful:

Def 3.3 If A, B are sets then $A \leq_{m} B$ means that there exists a computable f such that

$$
x \in A \Longleftrightarrow f(x) \in B
$$

We leave the proof of the following to the reader.

Theorem 3.4 If A is c.e. then $A \leq_{m} K$.

The key use of the above theorem is that we can phrase Σ_{1} questions as queries to K.

Theorem 3.5 $A \in \Sigma_{2}$ iff A is c.e.-in- K.

Proof:

1) $A \in \Sigma_{2}$ implies A is c.e.-in- K :

If $A \in \Sigma_{2}$ then there exists a TM R that always converges such that

$$
A=\{x \mid(\exists y)(\forall z)[R(x, y, z)=1]\} .
$$

Let M^{K} be the TM that does the following:

1. $\operatorname{Input}(x, y)$.
2. Ask $K(\forall z)[R(x, y, z)=1]$. (Can rephrase as $(\exists z)[R(x, y, z)=0]$.)
3. If YES answer YES, if NO then answer NO.

$$
A=\left\{x \mid(\exists y)\left[M^{K}(x, y)=1\right]\right\}
$$

Hence A is c.e.-in- K.
2) A c.e.-in- K implies $A \in \Sigma_{2}$.
A is c.e.-in- K. So

$$
A=W_{e}^{K}=\left\{x \mid(\exists s)(\forall t)\left[t \geq s \Longrightarrow x \in W_{e, t}^{K_{t}}\right]\right\} .
$$

So A is Σ_{2}.

Theorem 3.6 There exists COL: $\binom{N}{2} \rightarrow[2]$ such that there is NO infinite Σ_{2} homog set.

Proof: Combine Theorems 2.2 and 3.5. Note that we only need one part of the implication in Theorem 3.5.

4 Every Computable Coloring has an Infinite Π_{2} Homog set

We obtain this with a modification of the usual proof of Ramsey's theorem. the key is that we don't really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring $C O L:\binom{N}{2} \rightarrow[2]$ there is an infinite Π_{2} homog set.

Proof:

We are given computable $C O L:\binom{N}{2} \rightarrow[2]$.
CONSTRUCTION of x_{1}, x_{2}, \ldots and c_{1}, c_{2}, \ldots.
NOTE: at the end of stage s we might have x_{1}, \ldots, x_{i} defined where $i<s$. We will not try to keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and then at stage 1001 have a sequence of length only 25 . The sequence will grow eventually but do so in fits and starts.

$$
x_{1}=1
$$

$c_{1}=$ RED We are guessing. We might change our mind later
Let $s \geq 2$, and assume that x_{1}, \ldots, x_{s-1} and c_{1}, \ldots, c_{s-1} are defined.

1. Ask K Does there exists $x \geq x_{s-1}$ such that, for all $\left.1 \leq i \leq s-1, \operatorname{COL}\left(x_{i}, x\right)=c_{i}\right)$?
2. If YES then (using that $C O L$ is computable) find the least such x.

$$
\begin{aligned}
& x_{i}=x \\
& c_{i}=\text { RED We are guessing. We might change our mind later }
\end{aligned}
$$

We have implicitly tossed out all of the numbers between x_{i-1} and x_{i}.
3. If NO then we ask K how far back we can go. More rigorously we ask the following sequence of questions until we get a YES.

- Does there exists $x \geq x_{s-1}$ such that, for all $\left.1 \leq i \leq s-2, C O L\left(x_{i}, x\right)=c_{i}\right)$?
- Does there exists $x \geq x_{s-1}$ such that, for all $\left.1 \leq i \leq s-3, C O L\left(x_{i}, x\right)=c_{i}\right)$?
-
- Does there exists $x \geq x_{s-1}$ such that, for all $\left.1 \leq i \leq 2, C O L\left(x_{i}, x\right)=c_{i}\right)$?
- Does there exists $x \geq x_{s-1}$ such that, for all $\left.1 \leq i \leq 1, C O L\left(x_{i}, x\right)=c_{i}\right)$?
(One of these must be a YES since (1) if $c_{1}=R E D$ and there are NO red edges coming out of x_{1} then there must be an infinite number of $B L U E$ edges, and (2) if $c_{1}=$ BLUE its because there are only a finite number of $R E D$ edges coming out of x_{1} so there are an infinite number of $B L U E$ edges. Let i_{0} be such that There exists $x \geq x_{s-1}$ such that, for all $1 \leq i \leq i_{0}$, $\left.\operatorname{COL}\left(x_{i}, x\right)=c_{i}\right)$ Do the following:
(a) Change the color of c_{i+1}. (We will later see that this change must have been from $R E D$ to $B L U E$.
(b) Wipe out x_{i+2}, \ldots, x_{s-1}.
(c) Search for the $x \geq x_{s-1}$ that the question asked says exist.
(d) x_{i+2} is now x.
(e) c_{i+2} is now $R E D$.

END OF CONSTRUCTION of $x_{1}, x_{2} \ldots$ and c_{1}, c_{2}, \ldots.
We need to show that there is a Π_{2} homog set.
Let X be the set of x_{i} that are put on the board and stay on the board.
Let R be the set of $x_{i} \in X$ whose final color is $R E D$.
Claim 1: Once a number turns from $R E D$ to $B L U E$ it can't go back to $R E D$ again.

Proof:

If a number is turned $B L U E$ its because there are only a finite number of $R E D$ edges coming out of it. Hence there must be an infinite number of $B L U E$ edges coming out of it. Hence it will never change color (though it may be tossed out).

End of Proof

Claim 1: $X, R \in \Pi_{2}$.

Proof:

We show that $\bar{X} \in \Sigma_{2}$. In order to NOT be in X you must have, at some point in the construction, been tossed out.

$$
\bar{X}=\{x \mid(\exists x)[\text { at stage } s \text { of the construction } x \text { was tossed out }]\} .
$$

Note that the condition is computable-in- K. Hence \bar{X} is c.e.-in- K. By Theorem $3.5 \bar{X} \in \Sigma_{2}$.
We show that $\bar{R} \in \Sigma_{2}$. In order to NOT be in R you must have to either NOT be in X or have been turned blue. Note that once you turn at some point in the construction, been tossed out.

$$
\bar{R}=\bar{X} \cup\{x \mid(\exists x)[\text { at stage } s \text { of the construction } x \text { was turned BLUE }]\} .
$$

Recall that Σ_{2} is closed under complementation. So we only need to show that the other unionand is in Σ_{2}. Note that the condition is computable-in- K. Hence \bar{R} is c.e.-in- K. By Theorem 3.5
$\bar{R} \in \Sigma_{2}$.

End of Proof

There are two cases:

1. If R is infinite then R is an infinite homog set that is Π_{2}.
2. If R is finite then B is X minus a finite number of elements. Since X is Π_{2}, B is Π_{2}.

References

[1] C. Jockusch. Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268280, 1972. http://www/jstor.org/pss/2272972.

