Applications of the Erdös-Rado Canonical Ramsey Theorem to Erdös-Type Problems

William Gasarch-U of MD Sam Zbarsky- Mont. Blair. HS

William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS Applications of the Erdös-Rado Canonical Ramsey Theorem to

(4月) (1日) (日)

The following are known **EXAMPLES** of the kind of theorems we will be talking about.

- 1. If there are *n* points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/3})$ such that all distances between points are **DIFFERENT**. (KNOWN)
- If there are n points in ℝ², no 3 collinear, then there is a subset of size Ω((log log n)^{1/186}) such that all triangle areas are DIFFERENT. (OURS)

ヘロン 人間 とくほ とくほう

Definition:

- 1. $h_{2,d}(n)$ is the largest integer so that the following happens: For all subsets of \mathbb{R}^d of size *n* there is a subset *Y* of size $h_{2,d}(n)$ such that all distances are **DIFFERENT**.
- h_{a,d}(n) is the largest integer so that the following happens: For all subsets of ℝ^d of size n, no a on the same (a - 1)-hyperplane, there is a subset Y of size h_{a,d}(n) such that all a-volumes are DIFFERENT.
- 3. $h_{a,d}(\alpha)$ where $\aleph_0 \leq \alpha \leq 2^{\aleph_0}$ makes sense.
- 4. Erdös, others studied $h_{2,d}(n)$. Little was known about $h_{a,d}(n)$.

BEST KNOWN RESULTS:

1.
$$h_{2,d}(n) = \Omega(n^{1/(3d-2)})$$
. Torsten (1995).

- 2. $h_{2,2}(n) = \Omega(n^{1/3}/\log n)$. Charalambides (2012).
- 3. (AC) $h_{2,d}(\alpha) = \alpha$. Erdös (1950)
- 4. (AC) If α regular than $h_{a,d}(\alpha) = \alpha$.

OUR RESULTS (FEB 2013):

- 1. $h_{2,d}(n) \ge \Omega(n^{1/(6d)})$. (Uses Canonical Ramsey)
- 2. $h_{3,2}(n) \ge \Omega((\log \log n)^{1/186})$ (Uses Canonical Ramsey)
- 3. $h_{3,3}(n) \ge \Omega((\log \log n)^{1/396})$ (Uses Canonical Ramsey)

OUR RECENT RESULTS: (With David Harris and Douglas Ulrich)

1.
$$h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d}})$$
 (Simple Proof!)
2. $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d-3}})$ (Simple Proof PLUS hard known result)
3. $h_{a,d}(n) \ge \Omega(n^{\frac{1}{(2a-1)d}})$ (Uses Algebraic Geometry)

- 4. (AC) If α regular then $h_{a,d}(\alpha) = \alpha$ (Simple Proof)
- 5. (AD) If α regular then $\mathit{h_{a,d}}(\alpha) = \alpha$

(日)(4月)(4日)(4日)(日)

Standard Canonical Ramsey

Definition Let $COL : {\binom{[n]}{2}} \to \omega$. Let $V \subseteq [n]$. V is homog if $(\forall a < b, c < d)[COL(a, b) = COL(c, d)]$

V is min-homog if $(\forall a < b, c < d)[COL(a, b) = COL(c, d) \text{ iff } a = c]$

V is max-homog if
$$(\forall a < b, c < d)[COL(a, b) = COL(c, d) \text{ iff } b = d]$$

V is rainbow if $(\forall a < b, c < d)[COL(a, b) = COL(c, d) \text{ iff } a = c \text{ and } b = d]$

Theorem: (Lefmann-Rodl, 1995) $(\forall k)(\exists n \leq 2^{O(k^2 \log k)})$, $(\forall COL : {[n] \choose 2} \rightarrow \omega) (\exists V, |V| = k)$, V is either homog, min-homog, max-homog, or rainbow.

Definition: The set V is weak-homog if either $(\forall a, b, c, d \in V)[COL(a, b) = COL(c, d)]$ $(\forall a < b, c < d \in V)[a = c \implies COL(a, b) = COL(c, d)]$ $(\forall a < b, c < d \in V)[b = d \implies COL(a, b) = COL(c, d)]$ (Note: only one direction.)

Definition: $WER(k_1, k_2)$ is least *n* such that for all $COL: {\binom{[n]}{2}} \rightarrow \omega$ either have weak homog set of size k_1 or rainbow set of size k_2 .

Theorem: $WER(k_1, k_2) \le k_2^{O(k_1)}$.

Lemma: Let $p_1, \ldots, p_n \subseteq \mathbb{R}^d$. Let *COL* be defined by $COL(i,j) = |p_i - p_j|$. Then *COL* has no weak homog set of size d + 3.

イロト 不良 とうほう 不良 とうほ

POINT 1: $h_{2,d}(n) \ge \Omega(n^{1/(6d)})$ VIA CAN RAMSEY

Theorem: For all $d \ge 1$, $h_{2,d}(n) = \Omega(n^{1/(6d)})$. **Proof:** Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$. Let $COL : {[n] \choose 2} \to \mathbb{R}$ be defined by $COL(i,j) = |p_i - p_j|$.

k is largest integer s.t. $n \ge WER(d+3, k)$. By **VARIANT OF CANONICAL RAMSEY** $k = \Omega(n^{1/(6d)})$.

By the definition of $WER_3(d+3, k)$ there is either a weak homog set of size d+3 or a rainbow set of size k.

By **GEOMETRIC LEMMA** can't be weak homog case. Hence there must be a rainbow set of size k. THIS is the set we want!

(日)(4月)(4日)(4日)(日)

POINT 2: $h_{3,2}(n) \ge \Omega((\log \log n)^{1/186})$ VIA CAN RAMSEY

Theorem: $h_{3,2}(n) = \Omega((\log \log n)^{1/186}).$ **Proof:** Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^2$. Let $COL : {[n] \choose 3} \to \mathbb{R}$ be defined by $COL(i, j, k) = AREA(p_i, p_j, p_k).$

k is largest integer s.t. $n \ge WER_3(6, k)$. By **VARIANT OF CANONCIAL RAMSEY** $n \ge \Omega((\log \log n)^{1/186}).$

By the definition of $WER_3(6, k)$ there is either a weak homog set of size 6 or a rainbow set of size k.

By **HARDER GEOMETRIC LEMMA** can't be weak homog case. Hence there must be a rainbow set of size k. THIS is the set we want!

POINT 3: $h_{3,3}(n) \ge \Omega((\log \log n)^{1/396})$ VIA CAN RAMSEY

Theorem: $h_{3,3}(n) = \Omega((\log \log n)^{1/396}).$ **Proof:** Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^3$. Let $COL : {[n] \choose 3} \to \mathbb{R}$ be defined by $COL(i, j, k) = AREA(p_i, p_j, p_k).$

k is largest integer s.t. $n \ge WER_3(13, k)$. By **VARIANT OF CANONICAL RAMSEY** $n \ge \Omega((\log \log n)^{1/396})$.

By the definition of $WER_3(13, k)$ there is either a weak homog set of size 13 or a rainbow set of size k.

By **HARDER GEOMETRIC LEMMA** can't be weak homog case. Hence there must be a rainbow set of size k. THIS is the set we want!

ONWARD to NEW Results

To prove $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d}})$ need result on spheres first.

Definition $h'_{2,d}(n)$ is the largest integer so that the following happens: For all subsets of S^d of size *n* there is a subset *Y* of size $h'_{2,d}(n)$ such that all distances are **DIFFERENT**. We prove

Theorem For $d \ge 1$, $h'_{2,d}(n) \ge \Omega(n^{\frac{1}{3d}})$. Use induction on d.

(個) (子) (子) (子)

Base Case: d = 1. $X \subseteq S^1$ (a circle). M is the maximal subset of X with all distances distinct. m = |M|. $x \in X - M$. Either

1.
$$(\exists u \in M)(\exists \{u_1, u_2\} \in \binom{M}{2})[|x - u| = |u_1 - u_2|].$$

2. $(\exists \{u_1, u_2\} \in \binom{M}{2})[|x - u_1| = |x - u_2|].$

Map X - M to $M \times \binom{M}{2} \cup \binom{M}{2}$. Map is \leq 2-to-1.

$$|X-M| \leq 2 \left| M \times {\binom{M}{2}} \cup {\binom{M}{2}} \right|.$$

 $|M| = \Omega(n^{1/3}).$

INDUCTION STEP

 $X \subseteq S^d$. *M* a a maximal subset of *X*. $x \in X - M$. Either

1.
$$(\exists u \in M)(\exists \{u_1, u_2\} \in {M \choose 2})[|x - u| = |u_1 - u_2|].$$

2. $(\exists \{u_1, u_2\} \in {M \choose 2})[|x - u_1| = |x - u_2|].$
Map $X - M$ to $M \times {M \choose 2} \cup {M \choose 2}$. Two cases based on param δ .
Case 1: $(\forall B \in \text{co-domain})[|\text{map}^{-1}(B)| \le n^{\delta}].$ Map is $\le n^{\delta}$ -to-1.
 $|X - M| \le n^{\delta} \left| M \times {M \choose 2} \cup {M \choose 2} \right|.$ Hence $m \ge \Omega(n^{\frac{1-\delta}{3}}).$
Case 2: $(\exists B \in \text{co-domain})[|\text{map}^{-1}(B)| \ge n^{\delta}].$
KEY: map⁻¹(B) $\subseteq S^{d-1}$. By IH have set of size $\Omega(n^{\delta/3(d-1)}).$

Take
$$\delta=rac{d-1}{d}$$
 to obtain $\Omega(n^{1/3d})$ in both cases.

Lemma (Charalambides)

- 1. $h'_{2,d}(n) \ge \Omega(n^{1/3}).$
- 2. $h_{2,d}(n) \ge \Omega(n^{1/3}).$

Theorem For $d \ge 2$, $h'_{2,d}(n) \ge \Omega(n^{\frac{1}{3d-3}})$. Only change is the **BASE CASE**. Start at d = 2. Use Charalambides result that $h'_{2,d}(n) \ge \Omega(n^{1/3})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem For $d \ge 2$, $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d-3}})$. Induction on d. **Base Case:** Use Charalambides result that $h_{2,d}(n) \ge \Omega(n^{1/3})$. **Induction Step:** Similar to that in lower bound for $h'_{2,d}(n)$.

(個) (子) (子) (子)

I) Contrast:

- ▶ $h'_{a,d}(n)$ Induction Step reduces S^d to S^{d-1} .
- ► $h_{a,d}(n)$ Induction Step reduces R^d to R^{d-1} OR S^{d-1} .

II) KEY: In prove that $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d-3}})$ we need that inverse image of map was S^{d-1} or R^{d-1} .

III) Two views of result:

- $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d}})$ via self contained elementary techniques.
- $h_{2,d}(n) \ge \Omega(n^{\frac{1}{3d-3}})$ via using hard known result.

Theorem Attempt: For all $d \ge 2$, $h_{3,d}(n) \ge \text{LET'S FIND OUT!}$ **Base Case:** d = 2. $X \subseteq \mathbb{R}^2$, no 3 collinear. M is the maximal subset of X with all areas diff. m = |M|. $x \in X - M$. Either $(\exists \{u_1, u_2\} \in {M \choose 2})(\exists \{u_3, u_4\} \in {M \choose 2})$

$$AREA(x, u_1, u_2) = AREA(x, u_3, u_4)$$
$$(\exists \{u_1, u_2\} \in \binom{M}{2})(\exists \{u_3, u_4, u_5\} \in \binom{M}{3})$$

$$AREA(x, u_1, u_2) = AREA(u_3, u_4, u_5).$$

Map $X - M$ to $\binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}.$
Need Nice Inverse Images. DO NOT HAVE THAT!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ● ��や

Definition: Let $1 \le a \le d + 1$. Let $r \in \mathbb{N}$. $h_{a,d,r}$ is the largest integer so that the following happens: For all varieties V of dimension d and degree r (in complex proj space), for all subsets of V of size n, no a points in the same (a - 1)-hyperplane, there is a subset Y of size $h_{2,d,r}(n)$ such that all a-volumes are **DIFFERENT**.

Theorem Let $1 \le a \le d + 1$. Let $r \in \mathbb{N}$. $h_{a,d,r}(n) \ge \Omega(n^{\frac{1}{(2a-1)d}})$. (The constant depends on a, d, r.) **Comments on the Proof**

- 1. Proof uses Algebraic Geometry in Proj Space over C.
- 2. Cannot define Volume in Proj space!
- Can define VOL(a, b, c) ≠ VOL(d, e, f) via difference of determinents (a homog poly) being 0.
- 4. Proof uses Maximal subsets.

Corollary Let $1 \le a \le d+1$. Let $r \in \mathbb{N}$. $h_{a,d}(n) \ge \Omega(n^{\frac{1}{(2a-1)d}})$. (The constant depends on a, d.)

Theorem: (AC) $\aleph_0 \leq \alpha \leq 2^{\aleph_0}$, α regular, then $h_{a,d}(\alpha) = \alpha$. We do $h_{3,2}$ case. $X \subseteq \mathbb{R}^2$, no 3 collinear. M is a maximal subset of X. m = |M|. $x \in X - M$. Either $(\exists \{u_1, u_2\} \in {M \choose 2})(\exists \{u_3, u_4\} \in {M \choose 2})$ $AREA(x, u_1, u_2) = AREA(x, u_3, u_4)$ $(\exists \{u_1, u_2\} \in {M \choose 2})(\exists \{u_3, u_4, u_5\} \in {M \choose 2})$

$$AREA(x, u_1, u_2) = AREA(u_3, u_4, u_5)$$

Map $X - M$ to $\binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Assume $|M| < \alpha$.

マボト イラト イラト 二日

Case 1: $(\forall B \in \text{co-domain})[|\text{map}^{-1}(B)| < \alpha]$. Contradicts α regularity.

Case 2: $(\exists B \in \text{co-domain})[|\text{map}^{-1}(B)| = \alpha].$

KEY: Using Determinant Def of AREA, any such *B* is alg variety. Let B_1 be one such *B*. Can show $B_1 \subset X$.

Repeat procedure on B_1 . If get Case 1—DONE. If not get alg variety $B_2 \subset B_1 \subset X$,

If process does not stop then have

$$X \supset B_1 \supset B_2 \supset B_3 \cdots$$

Contradicts Hilbert Basis Theorem.

Theorem: (AD+DC) If $\aleph_0 \le \alpha \le 2^{\aleph_0}$ and α is regular then for all $1 \le a \le d+1$, $h_{a,d}(\alpha) = \alpha$. Proof omitted for space.

- 1. Get better lower bounds and **ANY** non-trivial upper bounds on $h_{a,d}(n)$.
- 2. What is $h_{a,d}(\alpha)$ for α singular? What axioms will be needed to prove results (e.g., AC, AD, DC)?
- 3. (DC) Assume $\alpha = 2^{\aleph_0}$ is regular. We have $AC \rightarrow h_{a,d}(\alpha) = \alpha$. We have $AD \rightarrow h_{a,d}(\alpha) = \alpha$. What if we have neither AC or AD?