
Applications of the Erdös-Rado Canonical
Ramsey Theorem to Erdös-Type Problems

William Gasarch-U of MD Sam Zbarsky- Mont. Blair. HS

William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS Applications of the Erdös-Rado Canonical Ramsey Theorem to Erdös-Type Problems



EXAMPLES

The following are known EXAMPLES of the kind of theorems we
will be talking about.

1. If there are n points in R2 then there is a subset of size
Ω(n1/3) such that all distances between points are
DIFFERENT. (KNOWN)

2. If there are n points in R2, no 3 collinear, then there is a
subset of size Ω((log log n)1/186) such that all triangle areas
are DIFFERENT. (OURS)
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An Erdös Problem Plus Plus

Definition:

1. h2,d(n) is the largest integer so that the following happens:
For all subsets of Rd of size n there is a subset Y of size
h2,d(n) such that all distances are DIFFERENT.

2. ha,d(n) is the largest integer so that the following happens:
For all subsets of Rd of size n, no a on the same
(a− 1)-hyperplane, there is a subset Y of size ha,d(n) such
that all a-volumes are DIFFERENT.

3. ha,d(α) where ℵ0 ≤ α ≤ 2ℵ0 makes sense.

4. Erdös, others studied h2,d(n). Little was known about ha,d(n).
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BEST KNOWN RESULTS AND OURS

BEST KNOWN RESULTS:

1. h2,d(n) = Ω(n1/(3d−2)). Torsten (1995).

2. h2,2(n) = Ω(n1/3/ log n). Charalambides (2012).

3. (AC) h2,d(α) = α. Erdös (1950)

4. (AC) If α regular than ha,d(α) = α.

OUR RESULTS (FEB 2013):

1. h2,d(n) ≥ Ω(n1/(6d)). (Uses Canonical Ramsey)

2. h3,2(n) ≥ Ω((log log n)1/186) (Uses Canonical Ramsey)

3. h3,3(n) ≥ Ω((log log n)1/396) (Uses Canonical Ramsey)
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OUR RECENT RESULTS

OUR RECENT RESULTS:
(With David Harris and Douglas Ulrich)

1. h2,d(n) ≥ Ω(n
1
3d ) (Simple Proof!)

2. h2,d(n) ≥ Ω(n
1

3d−3 ) (Simple Proof PLUS hard known result)

3. ha,d(n) ≥ Ω(n
1

(2a−1)d ) (Uses Algebraic Geometry)

4. (AC) If α regular then ha,d(α) = α (Simple Proof)

5. (AD) If α regular then ha,d(α) = α
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Standard Canonical Ramsey

Definition Let COL :
([n]

2

)
→ ω. Let V ⊆ [n].

V is homog if (∀a < b, c < d)[COL(a, b) = COL(c , d)]

V is min-homog if
(∀a < b, c < d)[COL(a, b) = COL(c , d) iff a = c]

V is max-homog if
(∀a < b, c < d)[COL(a, b) = COL(c , d) iff b = d ]

V is rainbow if
(∀a < b, c < d)[COL(a, b) = COL(c , d) iff a = c and b = d ]

Theorem: (Lefmann-Rodl, 1995) (∀k)(∃n ≤ 2O(k2 log k)),
(∀COL :

([n]
2

)
→ ω) (∃V , |V | = k), V is either homog, min-homog,

max-homog, or rainbow.
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Variant of Canonical Ramsey

Definition: The set V is weak-homog if either
(∀a, b, c , d ∈ V )[COL(a, b) = COL(c , d)]
(∀a < b, c < d ∈ V )[a = c =⇒ COL(a, b) = COL(c , d)]
(∀a < b, c < d ∈ V )[b = d =⇒ COL(a, b) = COL(c , d)]
(Note: only one direction.)

Definition: WER(k1, k2) is least n such that for all
COL :

([n]
2

)
→ ω either have weak homog set of size k1 or

rainbow set of size k2.

Theorem: WER(k1, k2) ≤ k
O(k1)
2 .
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Easy Geom Lemma

Lemma: Let p1, . . . , pn ⊆ Rd . Let COL be defined by
COL(i , j) = |pi − pj |. Then COL has no weak homog set of size
d + 3.

William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS Applications of the Erdös-Rado Canonical Ramsey Theorem to Erdös-Type Problems



POINT 1: h2,d(n) ≥ Ω(n1/(6d)) VIA CAN RAMSEY

Theorem: For all d ≥ 1, h2,d(n) = Ω(n1/(6d)).

Proof: Let P = {p1, . . . , pn} ⊆ Rd . Let COL :
([n]

2

)
→ R be

defined by COL(i , j) = |pi − pj |.

k is largest integer s.t. n ≥ WER(d + 3, k).
By VARIANT OF CANONICAL RAMSEY k = Ω(n1/(6d)).

By the definition of WER3(d + 3, k) there is either a weak homog
set of size d + 3 or a rainbow set of size k.

By GEOMETRIC LEMMA can’t be weak homog case.
Hence there must be a rainbow set of size k.
THIS is the set we want!
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POINT 2: h3,2(n) ≥ Ω((log log n)1/186) VIA CAN RAMSEY

Theorem: h3,2(n) = Ω((log log n)1/186).

Proof: Let P = {p1, . . . , pn} ⊆ R2. Let COL :
([n]

3

)
→ R be

defined by COL(i , j , k) = AREA(pi , pj , pk).

k is largest integer s.t. n ≥ WER3(6, k).
By VARIANT OF CANONCIAL RAMSEY
n ≥ Ω((log log n)1/186).

By the definition of WER3(6, k) there is either a weak homog set
of size 6 or a rainbow set of size k.

By HARDER GEOMETRIC LEMMA can’t be weak homog case.
Hence there must be a rainbow set of size k.
THIS is the set we want!
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POINT 3: h3,3(n) ≥ Ω((log log n)1/396) VIA CAN RAMSEY

Theorem: h3,3(n) = Ω((log log n)1/396).

Proof: Let P = {p1, . . . , pn} ⊆ R3. Let COL :
([n]

3

)
→ R be

defined by COL(i , j , k) = AREA(pi , pj , pk).

k is largest integer s.t. n ≥ WER3(13, k).
By VARIANT OF CANONICAL RAMSEY
n ≥ Ω((log log n)1/396).

By the definition of WER3(13, k) there is either a weak homog set
of size 13 or a rainbow set of size k.

By HARDER GEOMETRIC LEMMA can’t be weak homog case.
Hence there must be a rainbow set of size k.
THIS is the set we want!
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AUX RESULT: h′2,d(n) ≥ Ω(n
1
3d ) via MAXIMAL SETS

ONWARD to NEW Results

To prove h2,d(n) ≥ Ω(n
1
3d ) need result on spheres first.

Definition h′2,d(n) is the largest integer so that the following

happens: For all subsets of Sd of size n there is a subset Y of size
h′2,d(n) such that all distances are DIFFERENT.
We prove

Theorem For d ≥ 1, h′2,d(n) ≥ Ω(n
1
3d ).

Use induction on d .
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BASE CASE

Base Case: d = 1. X ⊆ S1 (a circle). M is the maximal subset of
X with all distances distinct. m = |M|.
x ∈ X −M. Either

1. (∃u ∈ M)(∃{u1, u2} ∈
(M

2

)
)[|x − u| = |u1 − u2|].

2. (∃{u1, u2} ∈
(M

2

)
)[|x − u1| = |x − u2|].

Map X −M to M ×
(M

2

)
∪

(M
2

)
. Map is ≤ 2-to-1.

|X −M| ≤ 2

∣∣∣∣M ×
(

M

2

)
∪

(
M

2

)∣∣∣∣.
|M| = Ω(n1/3).
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INDUCTION STEP

X ⊆ Sd . M a a maximal subset of X .
x ∈ X −M. Either

1. (∃u ∈ M)(∃{u1, u2} ∈
(M

2

)
)[|x − u| = |u1 − u2|].

2. (∃{u1, u2} ∈
(M

2

)
)[|x − u1| = |x − u2|].

Map X −M to M ×
(M

2

)
∪

(M
2

)
. Two cases based on param δ.

Case 1: (∀B ∈ co-domain)[|map−1(B)| ≤ nδ]. Map is ≤ nδ-to-1.

|X −M| ≤ nδ

∣∣∣∣M ×
(M

2

)
∪

(M
2

)∣∣∣∣. Hence m ≥ Ω(n
1−δ

3 ).

Case 2: (∃B ∈ co-domain)[|map−1(B)| ≥ nδ].
KEY: map−1(B) ⊆ Sd−1. By IH have set of size Ω(nδ/3(d−1)).

Take δ = d−1
d to obtain Ω(n1/3d) in both cases.
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BETTER AUX RESULT: h′2,d(n) ≥ Ω(n
1

3d−3 )

Lemma (Charalambides)

1. h′2,d(n) ≥ Ω(n1/3).

2. h2,d(n) ≥ Ω(n1/3).

Theorem For d ≥ 2, h′2,d(n) ≥ Ω(n
1

3d−3 ).
Only change is the BASE CASE.
Start at d = 2. Use Charalambides result that h′2,d(n) ≥ Ω(n1/3).
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NEW RESULT: h2,d(n) ≥ Ω(n
1

3d−3 ) via MAXIMAL SETS

Theorem For d ≥ 2, h2,d(n) ≥ Ω(n
1

3d−3 ).
Induction on d .
Base Case: Use Charalambides result that h2,d(n) ≥ Ω(n1/3).
Induction Step: Similar to that in lower bound for h′2,d(n).
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NOTES ON THE PROOF

I) Contrast:

I h′a,d(n) Induction Step reduces Sd to Sd−1.

I ha,d(n) Induction Step reduces Rd to Rd−1 OR Sd−1.

II) KEY: In prove that h2,d(n) ≥ Ω(n
1

3d−3 ) we need that inverse
image of map was Sd−1 or Rd−1.

III) Two views of result:

I h2,d(n) ≥ Ω(n
1
3d ) via self contained elementary techniques.

I h2,d(n) ≥ Ω(n
1

3d−3 ) via using hard known result.
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h3,d(n) ATTEMPT

Theorem Attempt: For all d ≥ 2, h3,d(n) ≥ LET’S FIND OUT!
Base Case: d = 2. X ⊆ R2, no 3 collinear. M is the maximal
subset of X with all areas diff. m = |M|.
x ∈ X −M. Either
(∃{u1, u2} ∈

(M
2

)
)(∃{u3, u4} ∈

(M
2

)
)

AREA(x , u1, u2) = AREA(x , u3, u4).

(∃{u1, u2} ∈
(M

2

)
)(∃{u3, u4, u5} ∈

(M
3

)
)

AREA(x , u1, u2) = AREA(u3, u4, u5).

Map X −M to
(M

2

)
×

(M
2

)
∪

(M
2

)
×

(M
3

)
.

Need Nice Inverse Images. DO NOT HAVE THAT!
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Definition of ha,d ,r(n)

Definition: Let 1 ≤ a ≤ d + 1. Let r ∈ N. ha,d ,r is the largest
integer so that the following happens: For all varieties V of
dimension d and degree r (in complex proj space), for all subsets
of V of size n, no a points in the same (a− 1)-hyperplane, there is
a subset Y of size h2,d ,r (n) such that all a-volumes are
DIFFERENT.
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Theorem about ha,d(n)

Theorem Let 1 ≤ a ≤ d + 1. Let r ∈ N. ha,d ,r (n) ≥ Ω(n
1

(2a−1)d ).
(The constant depends on a, d , r .)
Comments on the Proof

1. Proof uses Algebraic Geometry in Proj Space over C.

2. Cannot define Volume in Proj space!

3. Can define VOL(a, b, c) 6= VOL(d , e, f ) via difference of
determinents (a homog poly) being 0.

4. Proof uses Maximal subsets.

Corollary Let 1 ≤ a ≤ d + 1. Let r ∈ N. ha,d(n) ≥ Ω(n
1

(2a−1)d ).
(The constant depends on a, d .)
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ha,d(α) Under AC

Theorem: (AC) ℵ0 ≤ α ≤ 2ℵ0 , α regular, then ha,d(α) = α. We
do h3,2 case.
X ⊆ R2, no 3 collinear. M is a maximal subset of X . m = |M|.
x ∈ X −M. Either
(∃{u1, u2} ∈

(M
2

)
)(∃{u3, u4} ∈

(M
2

)
)

AREA(x , u1, u2) = AREA(x , u3, u4)

(∃{u1, u2} ∈
(M

2

)
)(∃{u3, u4, u5} ∈

(M
3

)
)

AREA(x , u1, u2) = AREA(u3, u4, u5)

Map X −M to
(M

2

)
×

(M
2

)
∪

(M
2

)
×

(M
3

)
. Assume |M| < α.
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ha,d(α) = α Cases of Proof

Case 1: (∀B ∈ co-domain)[|map−1(B)| < α]. Contradicts α
regularity.
Case 2: (∃B ∈ co-domain)[|map−1(B)| = α].
KEY: Using Determinant Def of AREA, any such B is alg variety.
Let B1 be one such B. Can show B1 ⊂ X .
Repeat procedure on B1. If get Case 1—DONE. If not get alg
variety B2 ⊂ B1 ⊂ X ,
If process does not stop then have

X ⊃ B1 ⊃ B2 ⊃ B3 · · ·

Contradicts Hilbert Basis Theorem.
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ha,d(α) Under AD

Theorem: (AD+DC) If ℵ0 ≤ α ≤ 2ℵ0 and α is regular then for all
1 ≤ a ≤ d + 1, ha,d(α) = α.
Proof omitted for space.

William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS Applications of the Erdös-Rado Canonical Ramsey Theorem to Erdös-Type Problems



Open Questions

1. Get better lower bounds and ANY non-trivial upper bounds
on ha,d(n).

2. What is ha,d(α) for α singular? What axioms will be needed
to prove results (e.g., AC, AD, DC)?

3. (DC) Assume α = 2ℵ0 is regular. We have
AC → ha,d(α) = α. We have AD → ha,d(α) = α. What if we
have neither AC or AD?
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