The Finite Canonical Ramsey Theorem:Intro and Erdos-Rado's Proof

William Gasarch-U of MD

Ramsey's Theorem For Graphs

Theorem: $(\forall k)(\exists n)$ for every COL: $\binom{[n]}{2} \rightarrow[c]$ there is a homog set of size k.

What if the number of colors was unbounded?
Do not necc get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

Attempt

Theorem: $(\forall k)(\exists n)$ for every $C O L:\binom{[n]}{2} \rightarrow \omega$ there is either a homog or rainbow set of size k.
FALSE:

- $\operatorname{COL}(i, j)=\min \{i, j\}$.
- $\operatorname{COL}(i, j)=\max \{i, j\}$.

Min-Homog, Max-Homog, Rainbow

Definition: Let COL: $\binom{[n]}{2} \rightarrow \omega$. Let $V \subseteq[n]$.

- V is homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff TRUE.
- V is min-homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$.
- V is max-homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $b=d$.
- V is rainbow if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$ and $b=d$.

One-Dim Can Ramsey Theorem

Definition: Let COL: $\binom{[n]}{1} \rightarrow \omega$. Let $V \subseteq[n]$.

- V is homogenous if $\operatorname{COL}(a)=\operatorname{COL}(c)$ iff TRUE.
- V is rainbow if $\operatorname{COL}(a)=\operatorname{COL}(c)$ iff $a=c$.

We write the next Theorem in an odd way to make it conform to the a-ary Can Ramsey Theorem.
Theorem: Let COL: $\binom{\left[k^{2}\right]}{1} \rightarrow \omega$. Then there exists either a homog set or a rainbow set of size k.

Canonical Ramsey Theorem for Graphs

Theorem: $(\forall k)(\exists n)$ for all COL : $\binom{[n]}{2} \rightarrow \omega$ there is either

- an homog set of size k,
- an min-homog set of size k,
- an max-homog set of size k,
- a rainbow set of size k.

I-homog for a-hypergraphs

Definition: Let COL: $\binom{[n]}{a} \rightarrow \omega$. Let $V \subseteq[n]$. Let $I \subseteq[a]$. The set V is I-homog if for all $x_{1}<\cdots<x_{a} \in\binom{[n]}{a}$ and $y_{1}<\cdots<y_{a} \in\binom{[n]}{a}$,

$$
\operatorname{COL}\left(x_{1}, \ldots, x_{a}\right)=\operatorname{COL}\left(y_{1}, \ldots, y_{a}\right) \text { iff }(\forall i \in I)\left[x_{i}=y_{i}\right] .
$$

Canonical Ramsey Theorem for a-hypergraphs

Theorem: $(\forall a)(\forall k)(\exists n)$ for all COL: $\binom{[n]}{a} \rightarrow \omega$ there exists $I \subseteq[a]$ and $V \subseteq[n],|V|=k$ and V is I-homog.

Definition: $E R_{a}(k)$ is the least n that works.
Note: $E R_{1}(k) \leq k^{2}$.

Definition:

$\Gamma_{0}(k)=k, \Gamma_{a+1}(k)=2^{\Gamma_{a}(k)}$.
Recall:

- $R_{1}(k)=2 k-1 \leq \Gamma_{0}(O(k))$
- $R_{a}(k) \leq \Gamma_{a-1}(O(k))$. (Constant depends on a.)
- $R_{a}^{c}(k) \leq \Gamma_{a-1}(O(k))$. (Constant depends on a, c.)

GOAL

We give MANY proofs of:

- Can Ramsey for graphs.
- Can Ramsey for a-hypergraphs.

We note

- Ease of proof.
- Bound on $E R_{a}(k)$ in terms of Γ.

PROOF ONE: The 2-ary Case

This is original proof due to Erdos-Rado (1950) ${ }^{\text {c }}$ This proof:

- Bounds $E R_{2}(k)$ using $E R_{1}$ and R_{4}
- Bounds $E R_{a}(k)$ using $E R_{a-1}$ and $R_{2 a}$.
- Shows $E R_{a}(k) \leq \Gamma_{a^{2}-1}\left(O\left(k^{2}\right)\right)$.

Proof of Can Ramsey Theorem for Graphs

Given COL: $\binom{[n]}{2} \rightarrow \omega$ define COL $^{\prime}:\binom{[n]}{4} \rightarrow[16]$

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2$.
3. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=3$.
4. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4$.
5. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=5$.
6. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=6$.
7. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=7$.
8. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=8$.
9. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=9$.
10. If $\operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=10$.
11. If $\operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=11$.
12. If $\operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=12$.
13. If $\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=13$.
14. If $\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=14$.
15. If $\operatorname{COL}\left(x_{2}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=15$.

Finish up the proof

If NONE of the above then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=16$.
CLASS DO IN GROUPS: Cases 1-15. Some use One-Dim Can Ramsey.

If color is 16 get Rainbow EASILY.
$E R_{2}(k) \leq R_{4}\left(E R_{1}(k)\right) \leq R_{4}\left(k^{2}\right) \leq \Gamma_{3}\left(O\left(k^{2}\right)\right)$.

- GOOD- All cases EASY.
- GOOD- Rainbow case trivial.
- BAD- number of cases is large.
- BAD- Proof yields $E R_{2}(k) \leq \Gamma_{3}\left(O\left(k^{2}\right)\right)$ LARGE!

PROOF ONE: The a-ary Case

List all unordered pairs of elements of $\binom{2 a}{a}$.
$\operatorname{COL}^{\prime}\left(x_{1}, \ldots, x_{2 a}\right)$ is the least i such that the i th pair is equal.
Else color it $\binom{\binom{2 a}{a}}{2}+1$. (Get rainbow EASILY.)
Need to prove it this works.
When get Homog set $\left\{h_{1}, h_{2}, h_{3}, \ldots h_{r}\right\}$ actually take $\left\{h_{a}, h_{2 a}, h_{3 a}, \ldots\right\}$. We ignore this in the analysis.

Proof by Example

I need a number a
I need two subsets of [2a]
$\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)$ and $\left(j_{1}, j_{2}, j_{3}, j_{4}, j_{5}\right)$
such that some coordinates are the same.

Proof by Example

$a=5$.
$(1,5,7,9,10)$ and $(2,5,6,8,10)$

$$
\operatorname{COL}\left(x_{1}, x_{5}, x_{7}, x_{9}, x_{10}\right)=\operatorname{COL}\left(x_{2}, x_{5}, x_{6}, x_{8}, x_{10}\right)
$$

Define $\operatorname{COL}^{\prime}(x, y)=\operatorname{COL}(-, x,-,-, y)$ (Here is where we use $\left\{h_{a}, h_{2 a}, \ldots\right\}$.)
Easy: $C O L^{\prime}$ is well defined. Apply $E R_{2}$. Say Max-homog.

$$
\begin{aligned}
& \operatorname{COL}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)=\operatorname{COL}\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \text { iff } \\
& \operatorname{COL}^{\prime}\left(y_{2}, y_{5}\right)=\operatorname{COL}^{\prime}\left(z_{2}, z_{5}\right)\left(\text { Def of } C O L^{\prime}\right) \text { iff } \\
& y_{5}=z_{5}\left(C O L^{\prime} \text { is Max-homog }\right)
\end{aligned}
$$

SO get $\{5\}$-homog

Proof by Harder Example

$a=7$.
$(1,2,7,8,10,11,13)$ and $(2,3,7,8,9,11,14)$

$$
\operatorname{COL}\left(x_{1}, x_{2}, x_{7}, x_{8}, x_{10}, x_{11}, x_{13}\right)=\operatorname{COL}\left(x_{2}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}, x_{14}\right)
$$

Define $\operatorname{COL}^{\prime}(x, y, z)=\operatorname{COL}(-,-x, y,-, z,-)$ $C O L^{\prime}$ is well defined (HW). If get $\{1,3\}$-homog.

$$
\begin{gathered}
\operatorname{COL}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right)=\operatorname{COL}\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}\right) \text { iff } \\
\operatorname{COL}^{\prime}\left(y_{3}, y_{4}, y_{6}\right)=\operatorname{COL}^{\prime}\left(z_{3}, z_{4}, z_{6}\right)\left(\text { Def of } C O L^{\prime}\right) \text { iff } \\
y_{3}=z_{3} \text { AND } y_{6}=z_{6}(\operatorname{COL} \text { is }\{1,3\} \text {-homog })
\end{gathered}
$$

SO get $\{3,6\}$-homog.

Upshot and PROS/CONS

Arity: 2a
Number of colors: $c=\left(\begin{array}{c}\left(\begin{array}{c}2 a \\ a \\ 2\end{array}\right)\end{array}\right)+1$.
Get $E R_{a}(k) \leq R_{2 a}^{c}\left(E R_{a-1}(k)\right)$ Can show

$$
E R_{a}(k) \leq \Gamma_{a^{2}-1}\left(O\left(k^{2}\right)\right)
$$

- GOOD- All cases EASY.
- GOOD- Rainbow case trivial.
- BAD- number of cases is large.
- BAD-ERa $(k) \leq \Gamma_{a^{2}-1}\left(O\left(k^{2}\right)\right)$. LARGE!

