PROOF TWO of the Finite Canonical Ramsey Theorem: Mileti's FIRST Proof

William Gasarch-U of MD

PROOF TWO: 2-ary Case

PROOF TWO and PROOF THREE are due to Joseph Mileti (2008)

He did infinite case and his interest was logic.
He showed that if COL: $\binom{[n]}{a} \rightarrow \omega$ is computable then there exists
$I \subseteq[a]$ and infinite I-homog set $H \in \Pi_{2 a-2}$.

PROOF TWO: 2-ary Case

PROOF TWO and PROOF THREE are due to Joseph Mileti (2008)

He did infinite case and his interest was logic.
He showed that if COL: $\binom{[n]}{a} \rightarrow \omega$ is computable then there exists
$I \subseteq[a]$ and infinite I-homog set $H \in \Pi_{2 a-2}$.
Someone had the crazy idea of taking his proof and seeing what happens in the finite case.

PROOF TWO: 2-ary Case

PROOF TWO and PROOF THREE are due to Joseph Mileti (2008)

He did infinite case and his interest was logic.
He showed that if COL: $\binom{[n]}{a} \rightarrow \omega$ is computable then there exists
$I \subseteq[a]$ and infinite I-homog set $H \in \Pi_{2 a-2}$.
Someone had the crazy idea of taking his proof and seeing what happens in the finite case.

I don't know why I did that.

PROOF TWO: 2-ary Case

PROOF TWO and PROOF THREE are due to Joseph Mileti (2008)

He did infinite case and his interest was logic.
He showed that if COL: $\binom{[n]}{a} \rightarrow \omega$ is computable then there exists
$I \subseteq[a]$ and infinite I-homog set $H \in \Pi_{2 a-2}$.
Someone had the crazy idea of taking his proof and seeing what happens in the finite case.

I don't know why I did that.
These slides are the ONLY source for this material!

What We Use

- Use R_{1} and $E R_{1}$ to prove graph version.
- Use R_{a-1} and $E R_{a-1}$ to prove a-hypergraph version.

In Proof THREE we will get rid of use of R_{a-1}.

Lemma on Recurrences

We use the following Lemma on Recurrences in ALL of Mileti's proofs.
Lemma: Assume $0<c<1,0<\delta \leq 1 / 2$ and $b \in \mathrm{R}^{+}$. Define a sequence as follows

$$
\begin{aligned}
b_{0} & \geq b \\
b_{i} & \geq c\left(b_{i-1}\right)^{\delta}
\end{aligned}
$$

Then

$$
b_{i} \geq c^{1+\delta+\delta^{2}+\cdots+\delta^{i-1}} b^{\delta^{i}} \geq c^{1 /(1+\delta)} b^{\delta^{i}} \geq c^{2} b^{\delta^{i}}
$$

Note: We may use this in a recurrence like

$$
\begin{aligned}
b_{0} & \geq b \\
b_{i} & \geq \frac{c}{i}\left(b_{i-1}\right)^{\delta}
\end{aligned}
$$

and take our value of c to be c / i. Note that this is still good for a lower bound- c / i is the smallest that coeff can go.

We refer to this as Rec Lemma.

Proof TWO of Can Ramsey Proof 2-ary case

Given COL: $\binom{[n]}{2} \rightarrow \omega$ define a sequence.
Stage 0: $X=\emptyset, A_{0}=[n]$.
Stage s: Have $X=\left\{x_{1}, \ldots, x_{s-1}\right\}$,
$C O L^{\prime}: X \rightarrow \omega \times\{$ homog, rain $\}, A_{s-1}$ defined.
Let x_{s} be least elt of A_{s-1}.
Case 1: $(\exists c)\left[\left|\left\{y \in A_{s-1}: \operatorname{COL}\left(x_{s}, y\right)=c\right\}\right| \geq \sqrt{\left.\left|A_{s-1}\right|\right]}\right.$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(x_{s}\right) & =(c, \text { homog }) \\
A_{s} & =\left\{y \in A_{s-1}: \operatorname{COL}\left(x_{s}, y\right)=c\right\}
\end{aligned}
$$

Note: $\left|A_{s}\right| \geq \sqrt{\left|A_{s-1}\right|}$.

Can Ramsey Proof TWO

Case 2: $(\forall c)\left[\left|\left\{y \in A_{s-1}: \operatorname{COL}\left(x_{s}, y\right)=c\right\}\right|<\sqrt{\left|A_{s-1}\right|}\right.$. Make all colors coming out of x_{s} to right diff:
Let A_{s} be set of all $x \in A_{s}, x$ is LEAST with color $\operatorname{COL}\left(x_{s}, x\right)$. Formally A_{s} is $\left\{y \in A_{s-1}\right.$:

$$
\begin{gathered}
\operatorname{COL}\left(x_{s}, y\right) \notin\left\{\operatorname{COL}\left(x_{s}, y^{\prime}\right): x_{s}<y^{\prime}<y \wedge y^{\prime} \in A_{s-1}\right\} \\
\}
\end{gathered}
$$

Now have:

$$
\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(x_{s}, y\right) \neq \operatorname{COL}\left(x_{s}, y^{\prime}\right)\right] .
$$

Note: $\left|A_{s}\right| \geq \sqrt{\left|A_{s-1}\right|}$.

Want to make colors DIFF

Important note and convention: For the rest of Case $2(\forall x \in X)$ means only those x with color (,- rain). Want to make the following true:

$$
(\forall x \in X)\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(x, y^{\prime}\right) \neq \operatorname{COL}\left(x_{s}, y\right)\right]
$$

Its OKAY if $\operatorname{COL}(x, y)=\operatorname{COL}\left(x_{s}, y\right)$.
For each $y \in A_{s}$ we thin out A_{s} so that:

- $(\forall x \in X)\left(\forall y^{\prime} \in A_{s}-\{y\}\right)\left[\operatorname{COL}\left(x, y^{\prime}\right) \neq \operatorname{COL}\left(x_{s}, y\right)\right]$.
- $(\forall x \in X)\left(\forall y^{\prime} \in A_{s}-\{y\}\right)\left[\operatorname{COL}(x, y) \neq \operatorname{COL}\left(x_{s}, y^{\prime}\right)\right]$.

BILL- SHOW AT BOARD

More to do!

$T=A_{s}$ (Current Version).
while $T \neq \emptyset$
$y=$ least element of T.
$T=T-\{y\}$
If $\left(\exists x \in X, y^{\prime} \in T-\{y\}\right)\left[\operatorname{COL}\left(x, y^{\prime}\right)=\operatorname{COL}\left(x_{s}, y\right)\right]$ then $T=T-\left\{y^{\prime}\right\}, \quad A_{s}=A_{s}-\left\{y^{\prime}\right\}$
(Do this for all such x, y^{\prime})
If $\left(\exists x \in X, y^{\prime} \in T-\{y\}\right)\left[\operatorname{COL}(x, y)=\operatorname{COL}\left(x_{s}, y^{\prime}\right)\right]$ then $T=T-\left\{y^{\prime}\right\}, \quad A_{s}=A_{s}-\left\{y^{\prime}\right\}$ (Do this for all such x, y^{\prime})

Note: At end $\left|A_{s}\right| \geq \sqrt{\left|A_{s-1}\right|} / s$ (see next slide for why).

Analysis of while Loop

Recall: only looking at $x \in X$ colored (- , rain). Hence all of the $x \in X$ we consider have all DIFF colors coming out of it. Call this statement $\operatorname{DIFF}(x)$.

Consider the statement:

$$
\text { If }\left(\exists x \in X, y^{\prime} \in T-\{y\}\right)\left[\operatorname{COL}\left(x, y^{\prime}\right)=\operatorname{COL}\left(x_{s}, y\right)\right]
$$

We think of x as tossing y^{\prime} OUT.
CLAIM: x can only toss out ONE y^{\prime}. PROOF: If $\operatorname{COL}\left(x, y^{\prime}\right)=\operatorname{COL}\left(x, y^{\prime \prime}\right)=\operatorname{COL}\left(x_{s}, y\right)$ then $\operatorname{DIFF}(x)$ is false. Constradiction.
So it now seems that each $x \in X$ could toss out an element, and hence you could toss $s-1$ elements. But NO- see next slide.

Analysis of while loop

CLAIM: If x, x^{\prime} toss out $y^{\prime}, y^{\prime \prime}$ then $y^{\prime}=y^{\prime \prime}$. PROOF: Recall again that we are only looking at $x \in X$ colored (,- rain). Inductively we know that $\left(\forall x \neq x^{\prime} \in Y\right)\left(\forall y^{\prime} \neq y^{\prime \prime} \in A_{s}\right)\left[\operatorname{COL}\left(x, y^{\prime}\right) \neq \operatorname{COL}\left(x^{\prime}, y^{\prime \prime}\right)\right]$. Hence the only way that $\operatorname{COL}\left(x, y^{\prime}\right)=\operatorname{COL}\left(x^{\prime} y^{\prime \prime}\right)$ is if $y^{\prime}=y^{\prime \prime}$. BOTTOMLINE: This first clause can only toss out ONE element.

Analysis of while loop

By the construction x_{s} has all DIFF colors coming out of. Call this statement $\operatorname{DIFF}\left(x_{s}\right)$.

Consider the statement:

$$
\text { If }\left(\exists x \in X, y^{\prime} \in T-\{y\}\right)\left[\operatorname{COL}(x, y)=\operatorname{COL}\left(x_{s}, y^{\prime}\right)\right]
$$

If this happens we think of x as tossing y^{\prime} out.
CLAIM: x can only toss out ONE y^{\prime}. PROOF: If x tosses out y^{\prime} and $y^{\prime \prime}$ then $\operatorname{COL}(x, y)=\operatorname{COL}\left(x_{s}, y^{\prime}\right)=\operatorname{COL}\left(x_{s}, y^{\prime \prime}\right)$. This violates $\operatorname{DIFF}\left(x_{s}\right)$. BOTTOMLINE: Each $x \in X$ dumps at most one element per stage. Hence this second IF statement dumps at most $|X| \leq s-1$ elements.
BOTTOMBOTTOMLINE: Each stage A_{s} declares one element IN (namely y) and declares at most s elements OUT.

So how big is A_{s+1} after all of this?

In stage i we KEEP y_{i} in A_{s} and we DUMP a set of elements $\left|Y_{i}\right|$ from A_{s}. We know $\left|Y_{i}\right| \leq s$. Let b be the number of elements in A_{s} after the while loop.
We begin with the set $\left\{y_{1}, \ldots, y_{b}\right\} \cup Y_{1} \cup \cdots \cup Y_{b}$. Hence

$$
\begin{aligned}
\sqrt{\left|A_{s-1}\right|} & \leq b+b s=(b+1) s \\
(b+1) s & \geq \sqrt{\left|A_{s-1}\right|} \\
b & \geq \sqrt{\left|A_{s-1}\right|} / s
\end{aligned}
$$

To Reiterate:
Note: At end $\left|A_{s}\right| \geq \sqrt{\left|A_{s-1}\right|} / s$.

OKAY- What is $\operatorname{COL}^{\prime}\left(x_{s}\right)$?

RECAP: Have

- $\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(x_{s}, y\right) \neq \operatorname{COL}\left(x_{s}, y^{\prime}\right)\right]$.
- $(\forall x \in X)\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(x_{s}, y\right) \neq \operatorname{COL}\left(x, y^{\prime}\right)\right]$
$f(s)$ TBD. $t=\left|A_{s}\right| \geq \frac{\sqrt{\left|A_{s-1}\right|}}{s}$.
Case 2.1: $(\exists i<s)\left[\left|\left\{y \in A_{s}: \operatorname{COL}\left(x_{i}, y\right)=\operatorname{COL}\left(x_{s}, y\right)\right\}\right| \geq \frac{t}{f(s)}\right]$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(x_{s}\right) & =\operatorname{COL}^{\prime}\left(x_{i}\right) \\
A_{s} & =\left\{y \in A_{s}: \operatorname{COL}\left(x_{i}, y\right)=\operatorname{COL}\left(x_{s}, y\right)\right\}
\end{aligned}
$$

Note: $\left|A_{s}\right| \geq \frac{t}{f(s)}$.

OKAY- What is $\operatorname{COL}^{\prime}\left(x_{s}\right)$?

Case 2.2: $(\forall i<s)\left[\left|\left\{y \in A_{s}: \operatorname{COL}\left(x_{i}, y\right)=\operatorname{COL}\left(x_{s}, y\right)\right\}\right|<\frac{t}{f(s)}\right]$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(x_{s}\right) & =(\ell, \text { rain }) \ell \text { is least-unused-rain-number } \\
A_{s} & =A_{s}-\left\{y:(\exists i)\left[\operatorname{COL}\left(x_{i}, y\right)=\operatorname{COL}\left(x_{s}, y\right)\right] .\right.
\end{aligned}
$$

Note: If (say) $\operatorname{COL}^{\prime}\left(x_{s}\right)=(19$, rain $)$ then the 19 has no real meaning except that its NOT $1,2, \ldots, 18$.
Note: $\left|A_{s}\right| \geq t-(s-1) \frac{t}{f(s)} \geq t\left(1-\frac{(s-1)}{f(s)}\right)$.

Recurrence for $\left|A_{s}\right|$

Case 1 yields: $\left|A_{s}\right| \geq \frac{t}{f(s)}$
Case 2 yields: $\left|A_{s}\right| \geq t\left(1-\frac{s-1}{f(s)}\right)$
Take $f(s)=1+(s-1)=s$ to obtain that in both cases get:
$\left|A_{s}\right| \geq \frac{t}{s} \geq \frac{\sqrt{\left|A_{s-1}\right|}}{s^{2}}$
Let $a_{s}=\left|A_{s}\right|$.
$a_{0}=n$
$a_{s} \geq \frac{\sqrt{a_{s-1}}}{s^{2}}$
By Rec Lemma with $b=n, c=\frac{1}{s^{2}}, \delta=1 / 2, i=s$ we get

$$
a_{s} \geq \frac{n^{1 / 2^{s}}}{s^{2}}
$$

Will later see how far we need to go.

How far out do we need to go?

We determine r later.
Have $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}, C O L^{\prime}: X \rightarrow \omega \times\{$ homog, rain $\}$.
Case 1: There are $r / 2$ colors of the form (,- homog).
Case 1a: There are $\sqrt{r / 2}$ that are the same. HOMOG.
Case 1b: There are $\sqrt{r / 2}$ that are the different. MIN-HOMOG
Case 2: There are $r / 2$ colors of the form (- , rain).
Case 1a: There are $\sqrt{r / 2}$ that are the same. MAX-HOMOG Case 1b: There are $\sqrt{r / 2}$ that are the different. RAINBOW
Need $r=2 k^{2}$.

Estimate n

Need: $a_{r} \geq 2$ where $r=2 k^{2}$.
Have: $a_{s} \geq \frac{n^{1 / 2^{s}}}{s^{2}}$
Let $s=2 k^{2}$. Need

$$
\begin{gathered}
\frac{n^{1 / 2^{s}}}{s^{2}} \geq 1 \\
n^{1 / 2^{s}} \geq s^{2} \\
n \geq s^{2^{s+1}}
\end{gathered}
$$

Suffice to take $n=2^{2^{2 s}}=\Gamma_{2}\left(4 k^{2}\right)$
UPSHOT: $E R_{2}(k) \leq \Gamma_{2}\left(4 k^{2}\right)$.

PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.
2. BAD-Proof complicated(?).
3. GOOD- $E R_{2}(k) \leq \Gamma_{2}\left(4 k^{2}\right)$. (We've seen worse).

PROOF TWO: 3-ary CASE

JUST LIKE 2-ary case!
Will use R_{2} and $E R_{2}$.
Theorem: For all k there exists n such that for all COL : $\binom{[n]}{3} \rightarrow \omega$ there exists $I \subseteq[3]$ and an I-homog set of size k.

Proof in the Style of Ramsey

Given COL: $\binom{[n]}{3} \rightarrow \omega$ define a sequence.
Stage $1 a_{1}=1, X=\left\{x_{1}\right\}, A_{1}=[n]-X$.
Stage s: Have $X=\left\{x_{1}, \ldots, x_{s-1}\right\}$,
COL $:\binom{X}{a-1} \rightarrow \omega \times\{$ homog, rain $\}$, and A_{s-1}.
Let $A_{s}^{0}=A_{s-1}$ and x_{s} be least element of A_{s-1}.
For all $0 \leq L \leq s-1$ we define $\operatorname{COL}^{\prime}\left(x_{L}, x_{s}\right)$ and thin out A,
Form $A_{s, 0}, A_{s, 1}, \ldots, A_{s, s}$.
Assume have $A_{s, L-1}$ and $\operatorname{COL}^{\prime}\left(x_{1}, x_{s}\right), \ldots, \operatorname{COL}^{\prime}\left(x_{L-1}, x_{s}\right)$.
Notation: We denote $A_{s, L}$ by A_{L} throughout.

Case 1

Case 1: $(\exists c)\left[\left|\left\{x \in A_{L-1}: \operatorname{COL}\left(x_{L}, x_{s}, x\right)=c\right\}\right| \geq \sqrt{\left|A_{L-1}\right|}\right.$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(x_{L}, x_{S}\right) & =(c, \text { homog }) \\
A_{L} & =\left\{x \in A_{L-1}: \operatorname{COL}\left(x_{L}, x_{s}, x\right)=c\right\}
\end{aligned}
$$

Note: $\left|A_{L}\right| \geq \sqrt{\left|A_{L-1}\right|}$.

Case 2

Case 2: $(\forall c)\left[\left|\left\{x \in A_{L-1}: \operatorname{COL}\left(x_{L}, x_{s}, x\right)=c\right\}\right|<\sqrt{\left|A_{L-1}\right|}\right.$. Make all colors coming out of $\left(x_{L}, x_{S}\right)$ to the right different:

Let A_{L} be the set of all $x \in A_{L-1}$ such that x is the LEAST number with the color $\operatorname{COL}\left(x_{L}, x_{s}, x\right)$.
Formally A_{L} is $\left\{x \in A_{L-1}\right.$:

$$
\begin{gathered}
\left.\operatorname{COL}\left(x_{L}, x_{s}, x\right) \notin\left\{\operatorname{COL}\left(x_{L}, x_{s}, y\right): x_{s}<y<x \wedge y \in A_{L-1}\right\}\right\} \\
\}
\end{gathered}
$$

Now have

$$
\left(\forall y, y^{\prime} \in A_{L}\right)\left[\operatorname{COL}\left(x_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(x_{L}, x_{s}, y^{\prime}\right)\right]
$$

Note: $\left|A_{L}\right| \geq \sqrt{\left|A_{L-1}\right|}$.

Want to make colors DIFF

Important Note and Convention: For the rest of Case 2
$\left(\forall Z \in\binom{X}{2}\right)$ means all such Z with $\operatorname{COL}^{\prime}(Z)=(-$, rain $)$.
Want to make the following true

$$
\left(\forall Z \in\binom{X}{2}\right)\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(Z, y^{\prime}\right) \neq \operatorname{COL}\left(x_{L}, x_{s}, y\right)\right]
$$

Its OKAY if $\operatorname{COL}(Z, y)=\operatorname{COL}\left(x_{L}, x_{s}, y\right)$.
For each $y \in A_{L}$ we thin out A_{L} so that:

- $\left(\forall Z \in\binom{x}{2}\right)\left(\forall y^{\prime} \in A_{L}-\{y\}\right)\left[\operatorname{COL}\left(Z, y^{\prime}\right) \neq \operatorname{COL}\left(x_{L}, x_{s}, y\right)\right]$.
- $\left(\forall Z \in\binom{X}{2}\right)\left(\forall y^{\prime} \in A_{L}-\{y\}\right)\left[\operatorname{COL}(Z, y) \neq \operatorname{COL}\left(x_{L}, x_{s}, y^{\prime}\right)\right]$.

BILL- SHOW AT BOARD

More to do!

Use C for $C O L$ for space
$T=A_{L}$ (elements to process)
while $T \neq \emptyset$

$$
\begin{aligned}
& y=\text { least element of } T \text {. } \\
& \left.T=T-\{y\} \quad \text { (but } y \text { stays in } A_{L}\right) \\
& \text { If }\left(\exists Z \in\binom{X}{2}, y^{\prime} \in T\right)\left[C\left(x_{L}, x_{s}, y\right)=C\left(Z, y^{\prime}\right)\right] \text { then } \\
& T=T-\left\{y^{\prime}\right\}, \quad A_{L}=A_{L}-\left\{y^{\prime}\right\} \\
& \text { If }\left(\exists Z \in\binom{X}{2}, y^{\prime} \in T\right)\left[C\left(x_{L}, x_{s}, y^{\prime}\right)=C(Z, y)\right] \text { then } \\
& \quad T=T-\left\{y^{\prime}\right\}, \quad A_{L}=A_{L}-\left\{y^{\prime}\right\}
\end{aligned}
$$

Note: At end $\left|A_{L}\right| \geq \sqrt{\mid A_{L-1}} /\binom{s-1}{2} \geq 2 \sqrt{\left|A_{L-1}\right|} / s^{2}$
Note: At end $\left.\left(\forall Z \in\binom{X}{2}, y^{\prime} \in A_{L}\right)\right)\left[\operatorname{COL}\left(x_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(Z, y^{\prime}\right)\right]$.

OKAY- What is $\operatorname{COL}^{\prime}\left(x_{L}, x_{s}\right)$?

RECAP:

- $\left(\forall y, y^{\prime} \in A_{L}\right)\left[\operatorname{COL}\left(x_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(x_{L}, x_{s}, y^{\prime}\right)\right]$.
- $\left(\forall y, y^{\prime} \in A_{L}\right)\left(\forall Z \in\binom{X}{2}\right)\left[\operatorname{COL}\left(x_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(Z, y^{\prime}\right)\right]$.
$f(s)$ TBD. Let $t=\left|A_{L}\right| \geq \frac{2 \sqrt{\left|A_{L-1}\right|}}{s^{2}}$.
Case 2.1:
$\left(\exists Z \in\binom{X}{2}\right)\left[\left|\left\{y \in A_{L}: \operatorname{COL}\left(x_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}\right| \geq \frac{t}{f(s)}\right]$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(x_{L}, x_{s}\right) & =\operatorname{COL}\left(x_{i}, x_{s}\right) \\
A_{L} & =\left\{y \in A_{L}: \operatorname{COL}\left(x_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}
\end{aligned}
$$

Note: This will be a color of the form (- , rain).
Note: $\left|A_{L}\right| \geq \frac{t}{f(s)}$.

OKAY- What is $\operatorname{COL}^{\prime}\left(x_{L}, x_{S}\right)$

Case 2.2:
$\left(\forall Z \in\binom{x}{2}\right)\left[\left|\left\{y \in A_{L}: \operatorname{COL}\left(x_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}\right|<\frac{t}{f(s)}\right]$.
$\operatorname{COL}^{\prime}\left(x_{L}, x_{s}\right)=(\ell$, rain $) \ell$ is least not-used-for-rain color.

$$
A_{L}=A_{L+1}-\left\{y:\left(\exists Z \in\binom{X}{2}\right)\left[\operatorname{COL}(Z, y)=\operatorname{COL}\left(x_{L}, x_{s}, y\right)\right] .\right.
$$

Note: $\left|A_{L}\right| \geq t-\binom{s-1}{2} \frac{t}{f(s)} \geq t\left(1-\binom{s-1}{2} \frac{1}{f(s)}\right)$

Picking $f(s)$

Case 1 yields: $\left|A_{L}\right| \geq \frac{t}{f(s)}$.
Case 2 yields: $\left|A_{L}\right| \geq t\left(1-\binom{s-1}{2} \frac{1}{f(s)}\right)$
Take $f(s)=1+\binom{s-1}{2} \leq s^{2} / 2$ to obtain that in both cases get:

$$
\left|A_{L}\right| \geq \frac{t}{f(s)} \geq \frac{2 \sqrt{\left|A_{L-1}\right|}}{s^{2}} \frac{2}{s^{2}} \geq \frac{\sqrt{\left|A_{L-1}\right|}}{s^{4}} .
$$

We do this process s times.

Whats Really Going on?

$$
\begin{aligned}
& b_{0}=b=a_{s-1} \\
& b_{L} \geq \frac{\sqrt{b_{L-1}}}{s^{4}}
\end{aligned}
$$

By Rec Lemma with $c=1 / s^{4}, \delta=1 / 2, i=L$ we get

$$
b_{L} \geq \frac{m^{1 / 2^{L}}}{s^{8}}
$$

In stage s do this for s times. Hence

$$
a_{s} \geq b_{s} \geq \frac{a_{s-1}^{1 / 2^{s}}}{s^{8}}
$$

Bound on A_{s}

$$
\text { Let } a_{s}=\left|A_{s}\right|
$$

$$
\begin{aligned}
& a_{0}=n \\
& a_{s} \geq \frac{a_{s-1}^{1 / 2^{s}}}{s^{8}}
\end{aligned}
$$

By Rec Lemma with $b_{i}=a_{i}, c=1 / s^{8}, \delta=1 / 2^{s}, i=s$, we get

$$
a_{s} \geq \frac{n^{1 / 2^{s^{2}}}}{s^{16}}
$$

We later see how far we need to go.

Now CASES

We determine r later
Have $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, COL $^{\prime}:\binom{X}{2} \rightarrow \omega \times\{$ homog, rain $\}$.

- Some of the colors are of form (- , homog),
- Some of the colors are of form (- , rain),

We would like to have a subset that has colors of the same type.
What to do?

Now CASES

We determine r later
Have $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, COL $^{\prime}:\binom{X}{2} \rightarrow \omega \times\{$ homog, rain $\}$.

- Some of the colors are of form (- , homog),
- Some of the colors are of form (- , rain),

We would like to have a subset that has colors of the same type.
What to do?
Use RAMSEY'S THEOREM ON PAIRS JUST 2 COLORS!
$\operatorname{COL}^{\prime \prime}(x, y)=\Pi_{2}\left(\operatorname{COL}^{\prime}(x, y)\right)$.
Let $r=R_{2}(m)$. Let H be the homog set of size m rel to $C O L^{\prime \prime}$. We determine m later.

Homog of color homog

Case 1: All pairs in H colored homog (real colors). Have

$$
\begin{gathered}
\left(\forall x<y<z_{1}<z_{2}\right)\left[\operatorname{COL}\left(x, y, z_{1}\right)=\operatorname{COL}\left(x, y, z_{2}\right)\right] \\
\operatorname{COL}^{\prime \prime \prime}(x, y)=\Pi_{1}\left(\operatorname{COL}^{\prime}(x, y)\right)=\operatorname{COL}(x, y,-)
\end{gathered}
$$

Get an I-homog set where $I \subseteq[2]$.

$$
\begin{gathered}
\operatorname{COL}\left(y_{1}, y_{2}, y_{3}\right)=\operatorname{COL}\left(z_{1}, z_{2}, z_{3}\right) \text { iff } \\
\operatorname{COL}^{\prime \prime \prime}\left(y_{1}, y_{2}\right)=\operatorname{COL}^{\prime \prime \prime}\left(z_{1}, z_{2}\right)\left(\text { def of } C O L^{\prime \prime \prime} \text { iff }\right) \\
(\forall i \in I)\left[y_{i}=z_{i}\right](\text { def of } I \text {-homog })
\end{gathered}
$$

Get I-homog set.

Homog of color rain

Case 2: All pairs in H colored rain. Have

$$
\left(\forall x<y<z_{1}<z_{2}\right)\left[\operatorname{COL}\left(x, y, z_{1}\right) \neq \operatorname{COL}\left(x, y, z_{2}\right)\right] .
$$

$\operatorname{COL}^{\prime \prime \prime}(x, y)=\Pi_{1}\left(\operatorname{COL}^{\prime}(x, y)\right)$
Get an I-homog set where $I \subseteq[2]$.

$$
\operatorname{COL}\left(y_{1}, y_{2}, y_{3}\right)=\operatorname{COL}\left(z_{1}, z_{2}, z_{3}\right) \text { iff }
$$

$$
\begin{gathered}
y_{3}=z_{3} \wedge C O L^{\prime \prime \prime}\left(y_{1}, y_{2}\right)=C O L^{\prime \prime \prime}\left(z_{1}, z_{2}\right) \text { (from the construction } \\
\text { iff } y_{3}=z_{3} \wedge(\forall i \in I)\left[y_{i}=z_{i}\right](\text { def of } I \text {-homog) })
\end{gathered}
$$

Get $I \cup\{3\}$-homog.

Estimate n

NEED: $m=E R_{2}(k)=k^{2}$ for $C O L^{\prime \prime \prime}$.
NEED $r=R_{2}(m)$ Note that $r \leq$

$$
\Gamma_{1}\left(2 E R_{2}(k)\right) \leq \Gamma_{1}\left(2 \Gamma_{2}\left(4 k^{2}\right)\right) \leq \Gamma_{1}\left(\Gamma_{2}\left(8 k^{2}\right)\right) \leq \Gamma_{3}\left(8 k^{2}\right)
$$

Note $r^{2} \leq \Gamma_{3}\left(16 k^{2}\right)$.
Need construction to run r steps. Need n such that

$$
\begin{aligned}
& \frac{n^{1 / 2^{r^{2}}}}{r^{16}} \geq 1 \\
& n \geq r^{16 \times 2^{r^{2}}}
\end{aligned}
$$

Suffices to take

$$
n=2^{2^{r^{2}}}=\Gamma_{2}\left(r^{2}\right) \leq \Gamma_{2}\left(\Gamma_{3}\left(16 k^{2}\right)\right) \leq \Gamma_{5}\left(16 k^{2}\right)
$$

So

PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.
2. GOOD-Seemed to be able to avoid alot of cases.
3. BAD-Proof complicated(?).
4. GOOD?- $E R_{3}(k) \leq \Gamma_{5}\left(16 k^{2}\right)$.

PROOF TWO: a-ary Case

REALLY JUST LIKE 3-ary case! (I mostly replaced 3 with a).
Will use R_{a-1} and $E R_{a-1}$.
Theorem: For all k there exists n such that for all COL : $\binom{[n]}{a} \rightarrow \omega$ there exists $I \subseteq[a]$ and an I-homog set of size k.

Proof in the Style of Ramsey

Given COL: : $\binom{[n]}{\mathrm{a}} \rightarrow \omega$ define a sequence.
Stage $a-2(\forall 1 \leq i \leq a-2)\left[x_{i}=i\right]$. $X=\left\{x_{1}, \ldots, x_{a-1}\right\}$.
$A_{a-1}=[n]-X$.
Stage s : Have $X=\left\{x_{1}, \ldots, x_{s-1}\right\}$,
COL : $\binom{X}{a_{-1}} \rightarrow \omega \times\{$ homog, rain $\}$, and A_{s-1}.
Let $A_{s}^{0}=A_{s-1}$ and x_{s} be least element of A_{s-1}.
For all $X_{L} \in\binom{X}{a-2}$ we define $\operatorname{COL}^{\prime}\left(X_{L}, x_{s}\right)$ and thin out A,
Form $A_{s}^{0}, A_{s}^{1}, \ldots, A_{s}^{\left(s^{s}-2\right)}$
Assume have A_{s}^{L-1} and $\operatorname{COL}^{\prime}\left(X_{1}, x_{s}\right), \ldots, \operatorname{COL}^{\prime}\left(X_{L-1}, x_{s}\right)$ defined.
Notation: We denote A_{s}^{L} by A_{L} throughout.

Case 1

Case 1: $(\exists c)\left[\left|\left\{x \in A_{L-1}: \operatorname{COL}\left(X_{L}, x_{s}, x\right)=c\right\}\right| \geq \sqrt{\left|A_{L-1}\right|}\right.$.

$$
\begin{aligned}
\operatorname{coL}^{\prime}\left(X_{L}, x_{s}\right) & =(c, \text { homog }) . \\
A_{L} & =\left\{x \in A_{L-1}: \operatorname{COL}\left(X_{L}, x_{s}, x\right)=c\right\}
\end{aligned}
$$

Note: $\left|A_{L}\right| \geq \sqrt{\left|A_{L-1}\right|}$.

Can Ramsey Proof

Case 2: $(\forall c)\left[\left|\left\{x \in A_{L-1}: \operatorname{COL}\left(X_{L}, x_{s}, x\right)=c\right\}\right|<\sqrt{\left|A_{L-1}\right|}\right.$. Make all colors coming out of $\left(X_{L}, x_{S}\right)$ to the right different:
Let A_{L} be the set of all $x \in A_{L-1}$ such that x is the LEAST number with the color $\operatorname{COL}\left(X_{L}, x_{S}, x\right)$.
Formally $A_{L}=\left\{x \in A_{L-1}\right.$:

$$
\operatorname{COL}\left(X_{L}, x_{s}, x\right) \notin\left\{\operatorname{COL}\left(X_{L}, x_{s}, y\right): x_{s}<y<x \wedge y \in A_{L-1}\right\}
$$

Now have

$$
\left(\forall y, y^{\prime} \in A_{L}\right)\left[\operatorname{COL}\left(x_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(x_{L}, x_{s}, y^{\prime}\right)\right] .
$$

Note: $\left|A_{L}\right| \geq \sqrt{\left|A_{L-1}\right|}$.

Want to make colors DIFF

Important Note and Convention: For the rest of Case 2 we only care about $Z \in\binom{X}{a-1}$ such that $\operatorname{COL}^{\prime}(Z)=(-$, rain $)$.
Want to make the following true

$$
\left(\forall Z \in\binom{X}{a-1}\right)\left(\forall y, y^{\prime} \in A_{s}\right)\left[\operatorname{COL}\left(Z, y^{\prime}\right) \neq \operatorname{COL}\left(X_{L}, x_{s}, y\right)\right]
$$

Its OKAY if $\operatorname{COL}(Z, y)=\operatorname{COL}\left(X_{L}, y\right)$.
For each $y \in A_{L}$ we thin out A_{L} so that:

- $\left(\forall Z \in\binom{x}{a-1}\right)\left(\forall y^{\prime} \in A_{L}-\{y\}\right)\left[\operatorname{COL}\left(Z, y^{\prime}\right) \neq \operatorname{COL}\left(X_{L}, x_{s}, y\right)\right]$.
- $\left(\forall Z \in\binom{x}{a-1}\right)\left(\forall y^{\prime} \in A_{L}-\{y\}\right)\left[\operatorname{COL}(Z, y) \neq \operatorname{COL}\left(X_{L}, x_{s}, y^{\prime}\right)\right]$.

BILL- SHOW AT BOARD

More to do!

Use C for $C O L$ for space
$T=A_{L}$ (elements to process)
while $T \neq \emptyset$

$$
\begin{aligned}
& y=\text { Ieast element of } T \text {. } \\
& T=T-\{y\} \quad\left(\text { but } y \text { stays in } A_{L}\right) \\
& \text { If }\left(\exists Z \in\binom{x}{a-1}, y^{\prime} \in T\right)\left[C\left(X_{L}, x_{s}, y\right)=C\left(Z, y^{\prime}\right)\right] \text { then } \\
& \quad T=T-\left\{y^{\prime}\right\} \quad A_{L}=A_{L}-\left\{y^{\prime}\right\} \\
& \text { If }\left(\exists Z \in\binom{X}{a-1} y^{\prime} \in T\right)\left[C\left(X_{L}, x_{s}, y^{\prime}\right)=C(Z, y)\right] \text { then } \\
& \quad T=T-\left\{y^{\prime}\right\} \quad A_{L}=A_{L}-\left\{y^{\prime}\right\}
\end{aligned}
$$

Can show that for each $y \in T$ that is considered:

1) There is at most ONE Z such that there is a $y^{\prime} \in T$ such that $C\left(X_{L}, x_{s}, y\right)=C\left(Z, y^{\prime}\right)$.
2) For each $Z \in\binom{X}{a-1}$ there is at most one $y^{\prime} \in T$ such that $C\left(X_{L}, x_{s}, y^{\prime}\right)=C(Z, y)$.

Analysis

Begin with $T=A_{L}$. Every iteration we

- Ensure one elements stays in A_{L}.
- Remove at most $\binom{s}{a-1}+1 \leq s^{a-1}$ elements of A_{L}.
$c_{0}=\sqrt{A_{L-1}}$ (initial size of $\left.A_{L}\right)$
$c_{i}=c_{i-1}-s^{a-1}$.
Can show $c_{i}=c_{0}-i s^{a-1}$.
New $\left|A_{L}\right| \geq$ Numb of iterations $\geq c_{0} / s^{a-1} \geq \sqrt{\left|A_{L-1}\right|} / s^{a-1}$.
Also: At end
$\left.\left(\forall Z \in\binom{x}{a-1}, y^{\prime} \in A_{L}\right)\right)\left[\operatorname{COL}\left(X_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(Z, y^{\prime}\right)\right]$.

OKAY- What is $\operatorname{COL}^{\prime}\left(X_{L}, x_{s}\right)$?

RECAP:

- $\left(\forall y, y^{\prime} \in A_{L}\right)\left[\operatorname{COL}\left(X_{L}, x_{s}, y\right) \neq \operatorname{COL}\left(X_{L}, x_{S}, y^{\prime}\right)\right]$
- $\left(\forall y, y^{\prime} \in A_{L}\right)\left(\forall Z \in\binom{x}{a-1}\right)\left[\operatorname{COL}\left(X_{L}, x_{s}, x\right) \neq \operatorname{COL}\left(Z, y^{\prime}\right)\right]$
$f(s)$ TBD. Let $t=\left|A_{L}\right| \geq \frac{\sqrt{\left|A_{L-1}\right|}}{s^{a-1}}$
Case 2.1:
$\left(\exists Z \in\binom{X}{a-1}\right)\left[\left|\left\{y: \operatorname{COL}\left(X_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}\right| \geq \frac{t}{f(s)}\right]$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(X_{L}, x_{s}\right) & =\operatorname{COL}\left(X_{i}, x_{s}\right) \\
A_{L} & =\left\{y \in A_{L}: \operatorname{COL}\left(X_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}
\end{aligned}
$$

Note: This will be a color of the form (- , rain).
Note: $\left|A_{L}\right| \geq \frac{t}{f(s)}$.

OKAY- What is $\operatorname{COL}^{\prime}\left(X_{L}, x_{S}\right)$

Case 2.2:
$\left(\forall Z \in\binom{X}{a-1}\right)\left[\left|\left\{y \in A_{L}: \operatorname{COL}\left(X_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right\}\right|<\frac{t}{f(s)}\right]$.

$$
\begin{aligned}
\operatorname{COL}^{\prime}\left(X_{L}, x_{s}\right) & =(\ell, \text { rain })(\ell \text { is least not-used-for-rain color. }) \\
A_{L} & =A_{L}-\left\{y:\left(\exists Z \in\binom{x}{a-1}\left[\operatorname{COL}\left(X_{L}, x_{s}, y\right)=\operatorname{COL}(Z, y)\right]\right.\right.
\end{aligned}
$$

Note: $\left|A_{L}\right| \geq t-\binom{s-1}{a-1} \frac{t}{f(s)} \geq t\left(1-\binom{s-1}{a-1} \frac{1}{f(s)}\right)$

Picking $f(s)$

Case 1 yields $\left|A_{L}\right| \geq \frac{t}{f(s)}$.
Case 2 yields $\left|A_{L}\right| \geq t\left(1-\binom{s-1}{a-1} \frac{1}{f(s)}\right)$
Take $f(s)=1+\binom{s-1}{a-1} \leq s^{a} / a!$. Both cases yield:

$$
\left|A_{L}\right| \geq \frac{t}{f(s)} \geq \frac{\sqrt{\left|A_{L-1}\right|}}{s^{a-1}} \frac{a!}{s^{a}} \geq \frac{\sqrt{\left|A_{L-1}\right|}}{s^{2 a}}
$$

(We could have kept the a ! and have denom $s^{2 a-1}$ but what we do is simpler and does not lose much.)

We do this process $\binom{s-1}{a-1} \leq s^{a-1}$ times.

Whats Really Going on?

$$
\begin{aligned}
& b_{0}=b=a_{s-1} \\
& b_{L} \geq \frac{\sqrt{b_{L-1}}}{s^{2(a-1)}}
\end{aligned}
$$

By Rec Lemma with $\delta=1 / 2, c=s^{2 a-2}, i=L$ we get

$$
b_{L} \geq \frac{b^{1 / 2^{L}}}{s^{4 a-4}}
$$

In stage s do this for $\leq s^{a-1}$ times. Hence

$$
a_{s} \geq b_{s^{a-1}} \geq \frac{a_{s-1}^{1 / 2^{s^{a-1}}}}{s^{4 a-4}}
$$

Bound on A_{s}

Let $a_{s}=\left|A_{s}\right|$.

$$
\begin{aligned}
a_{0} & =n \\
a_{s} & \geq \frac{a_{s-1}^{1 / 2}}{s^{4 a-4}} .
\end{aligned}
$$

by Rec Lemma with $\delta=1 / 2^{2^{a-1}}, c=1 / s^{4 a-4}, b=a_{0}=n, i=s$, we get

$$
a_{s} \geq \frac{n^{1 / 2^{s^{a}}}}{s^{8 a-8}}
$$

We later see how far we need to go.

Now CASES

We determine r later
Have $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, COL $^{\prime}:\binom{X}{a} \rightarrow \omega \times\{$ homog, rain $\}$.

- Some of the colors are of form (- , homog),
- Some of the colors are of form (- , rain),

We would like to have a subset that has colors of the same type.
What to do?

Now CASES

We determine r later
Have $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, COL $^{\prime}:\binom{X}{a} \rightarrow \omega \times\{$ homog, rain $\}$.

- Some of the colors are of form (- , homog),
- Some of the colors are of form (- , rain),

We would like to have a subset that has colors of the same type.
What to do?
Use RAMSEY'S THEOREM ON ($a-1$)-tuples JUST 2 COLORS!
$\operatorname{COL}^{\prime \prime}(W)=\Pi_{2}\left(\operatorname{COL}^{\prime}(W)\right)$.
Let $r=R_{a-1}(m)$. Let H be the homog set of size m rel to $C O L^{\prime \prime}$.
We determine m later.

Homog of color homog

Case 1: Color is homog (real colors). Have

$$
\begin{gathered}
\left(\forall Y \in\binom{H}{a-1}, z_{1}, z_{2}\right)\left[\operatorname{COL}\left(Y, z_{1}\right)=\operatorname{COL}\left(Y, z_{2}\right)\right] \\
\operatorname{COL}^{\prime \prime \prime}(Y)=\Pi_{1}\left(\operatorname{COL}^{\prime}(Y)\right)=\operatorname{COL}(Y,-)
\end{gathered}
$$

Get an I-homog set where $I \subseteq[a-1]$.

$$
\begin{gathered}
\operatorname{COL}\left(y_{1}, \ldots, y_{a}\right)=\operatorname{COL}\left(z_{1}, \ldots, z_{a}\right) \text { iff } \\
\operatorname{COL}^{\prime \prime \prime}\left(y_{1}, \ldots, y_{a-1}\right)=\operatorname{COL}^{\prime \prime \prime}\left(z_{1}, \ldots, z_{a-1}\right)\left(\text { def of } C O L^{\prime \prime \prime}\right. \text { iff } \\
(\forall i \in I)\left[y_{i}=z_{i}\right](\text { def of } I \text {-homog) }
\end{gathered}
$$

So get I-homog set.

Homog of color rain

Case 2: Color is rain.
Have

$$
\begin{aligned}
& \quad\left(\forall Y \in\binom{H}{a-1}, z_{1}, z_{2}\right)\left[\operatorname{COL}\left(Y, z_{1}\right) \neq \operatorname{COL}\left(Y, z_{2}\right)\right] . \\
& \operatorname{COL}^{\prime \prime \prime}(Y)=\Pi_{1}\left(\operatorname{COL}^{\prime}(Y)\right) \\
& \text { Get an } I \text {-homog set where } I \subseteq[a-1] .
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{COL}\left(y_{1}, \ldots, y_{a}\right)=\operatorname{COL}\left(z_{1}, \ldots, z_{a}\right) \text { iff } \\
y_{a}=z_{a} \wedge \operatorname{COL}^{\prime \prime \prime}\left(y_{1}, \ldots, y_{a-1}\right)=\operatorname{COL}^{\prime \prime \prime}\left(z_{1}, \ldots, z_{a-1}\right) \text { (from const. } \\
\text { iff } y_{a}=z_{a} \wedge(\forall i \in I)\left[y_{i}=z_{i}\right] \text { (def of } I \text {-homog)). }
\end{gathered}
$$

Get $I \cup\{a\}$-homog set.
Need $m=E R_{a-1}(k)$ for $C O L^{\prime \prime \prime}$.

Estimate n

NEED $m=E R_{a-1}(k)$ for $C O L^{\prime \prime \prime}$.
NEED $r=R_{a-1}(m)$.

$$
r=R_{a-1}\left(E R_{a-1}(k)\right) \leq \Gamma_{a-2}\left(E R_{a-1}(k)\right)
$$

Need construction to run r steps. Need n such that

$$
\begin{aligned}
& \frac{n^{1 / 2^{r}}}{r^{8 a-8}} \geq 1 \\
& n \geq r^{8 a \times 2^{r}}
\end{aligned}
$$

Suffices to take $n=2^{2^{2 a r}}=\Gamma_{2}(2 a r)$

$$
n=\leq \Gamma_{2}(2 a r)=\Gamma_{2}\left(2 a \Gamma_{a-2}\left(E R_{a-1}(k)\right) \leq \Gamma_{a}\left(E R_{a-1}(2 a k)\right.\right.
$$

So

$$
E R_{a}(k) \leq \Gamma_{a}\left(E R_{a-1}(2 a k)\right) .
$$

SOLVE REC

$$
\begin{aligned}
& E R_{1}(k) \leq \Gamma_{0}\left(k^{2}\right) \\
& E R_{a}(k) \leq \Gamma_{a}\left(E R_{a-1}(2 a k)\right)
\end{aligned}
$$

Can show $E R_{a}(k) \leq \Gamma_{f(a)}\left(4 a k^{2}\right)$ where $f(a)=\frac{a^{2}+a-2}{2}$.

PROS and CONS

1. GOOD-Proof reminsicent of Ramsey Proof.
2. GOOD-Seemed to be able to avoid alot of cases.
3. BAD-Proof complicated(?).
4. GOOD?- $E R_{a}(k) \leq \Gamma_{f(a)}\left(4 a k^{2}\right)$ where $f(a)=\frac{a^{2}+a-2}{2}$. An improvement!
