The Complexity of Grid Coloring

Daniel Apon-U of MD William Gasarch—U of MD Kevin Lawler—Permanent

Grid Coloring

Notation: If $n \in \mathrm{~N}$ then $[n]$ is the set $\{1, \ldots, n\}$.
Definition
$G_{n, m}$ is the grid [$\left.n\right] \times[m]$.

1. $G_{n, m}$ is c-colorable if there is a c-coloring of $G_{n, m}$ such that no rectangle has all four corners the same color.
2. $\chi\left(G_{n, m}\right)$ is the least c such that $G_{n, m}$ is c-colorable.

Examples

A FAILED 2-Coloring of $G_{4,4}$

R	B	B	R
B	R	R	B
B	B	R	R
R	R	R	B

A 2-Coloring of $G_{4,4}$

R	B	B	R
B	R	R	B
B	B	R	R
R	B	R	B

Example: a 3-Coloring of $\mathbf{G}(\mathbf{1 0}, \mathbf{1 0})$

EXAMPLE: A 3-Coloring of $G_{10,10}$

R	R	R	R	B	B	G	G	B	G
R	B	B	G	R	R	R	G	G	B
G	R	B	G	R	B	B	R	R	G
G	B	R	B	B	R	G	R	G	R
R	B	G	G	G	B	G	B	R	R
G	R	B	B	G	G	R	B	B	R
B	G	R	B	G	B	R	G	R	B
B	B	G	R	R	G	B	G	B	R
G	G	G	R	B	R	B	B	R	B
B	G	B	R	B	G	R	R	G	G

It is known that CANNOT 2-color $G_{10,10}$. Hence $\chi\left(G_{10,10}\right)=3$.

4-Colorability

1. Fenner, Gasarch, Glover, Purewall [FGGP] had reasons to think $G_{17,17}$ is 4 -colorable but they did not have a 4-coloring.
2. In 2009 Gasarch offered a prize of $\$ 289.00$ for the first person to email him a 4-coloring of $G_{17,17}$.
3. Brian Hayes, Scientific American Math Editor, popularized the challenge.

Challenge Was Hard

1. Lots of people worked on it.
2. No progress.
3. Finally solved in 2012 by Bernd Steinbach and Christian Posthoff [SP]. Clever, and SAT-solver, but did not generalize.

Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere? YES!
2. Is there a Prop Statement about Grid Coloring whose resolution proof requires exp size? YES!

Part I of Talk-NP Completeness of GCE

THERE IS AN NP-COMPLETE PROBLEM LURKING!

Grid Coloring Hard!-NP stuff

1. Let $c, N, M \in N$. A partial mapping χ of $N \times M$ to $\{1, \ldots, c\}$ is a extendable to a c-coloring if there is an extension of χ to a total mapping which is a c-coloring of $N \times M$.
2.

$$
G C E=\{(N, M, c, \chi) \mid \chi \text { is extendable }\} .
$$

GCE is NP-complete!

Big Example

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
$$

												C_{1}	C_{1}	C_{2}	C_{2}	C_{3}	C_{3}
	D	T	T	T	T	T	T										
\bar{x}_{4}		D	T	F	D	D	D	D	D	F							
x_{4}		D	T	F	D	D	D	F	D	D							
\bar{x}_{3}		D	D	D	D	D	D	T	F	D							
x_{3}		D	D	D	D	T	F	T	F	D	D	D	D			D	D
\bar{x}_{3}		D	D	D	D	T	F	D	D	D	D	D	F	D	D		
\bar{x}_{2}		D	D	T	F	D	F	D	D	D							
x_{2}		D	D	T	F	D	D	D	D	D	D			D	D	D	D
\bar{x}_{1}		T	F	D	F	D											
x_{1}		T	F	D	F	D	D	D	D	D							

Does this Explain why the Challenge was Hard?

1. MAYBE NOT: GCE is Fixed Parameter Tractable: For fixed c $G C E_{c}$ is in time $O\left(N^{2} M^{2}+2^{O\left(c^{4}\right)}\right)$. But for $c=4$ this is huge!
2. MAYBE NOT: Our result says nothing about the case where the grid is originally all blank.

Part II of Talk—Lower Bounds on Tree Resolution

YOU SAY YOU WANT A RESOLUTION!

Resolution

Definition

Let $\varphi=C_{1} \wedge \cdots \wedge C_{L}$ be a CNF formula. A Resolution Proof of $\varphi \notin S A T$ is a sequence of clauses such that on each line you have either

1. One of the C's in φ (called an AXIOM).
2. $A \vee B$ if $A \vee x$ and $B \vee \neg x$ were on prior lines. Variable that is resolved on is x.
3. The last line has the empty clause.

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2.

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2 .
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2 .
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation: There is no mono 1-rectangle.

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2 .
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation: There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2 .
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation: There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

Interpretation: There is no mono 2-rectangle.

A Relevent Formula

The AND of the following:

1. For $i, j \in\{1, \ldots, 5\}$

$$
x_{i j 1} \vee x_{i j 2}
$$

Interpretation: (i, j) is colored either 1 or 2 .
2. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 1} \vee \neg x_{i^{\prime} j 1} \vee \neg x_{i j^{\prime} 1} \vee \neg x_{i^{\prime} j^{\prime} 1}
$$

Interpretation: There is no mono 1-rectangle.
3. For $i, j, i^{\prime}, j^{\prime} \in\{1, \ldots, 5\}$

$$
\neg x_{i j 2} \vee \neg x_{i^{\prime} j 2} \vee \neg x_{i j^{\prime} \prime} \vee \neg x_{i^{\prime} j^{\prime} 2}
$$

Interpretation: There is no mono 2-rectangle.
We interpret this statement as saying There is a 2-coloring of $G_{5,5}$.
This statement is known to be false.

GRID(n,m,c)

Definition

Let $n, m, c \in \mathrm{~N} . \operatorname{GRID}(n, m, c)$ is the AND of the following:

1. For $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$,

$$
x_{i j 1} \vee x_{i j 2} \vee \cdots \vee x_{i j c}
$$

Interpretation: (i, j) is colored either 1 or \cdots or c.
2. For $i, i^{\prime} \in\{1, \ldots, n\}, j, j^{\prime} \in\{1, \ldots, m\}, k \in\{1, \ldots, c\}$,

$$
\neg x_{i j k} \vee \neg x_{i^{\prime} j k} \vee \neg x_{i j^{\prime} k} \vee \neg x_{i^{\prime} j^{\prime} k}
$$

Interpretation: There is no mono rectangle.
We interpret this statement as saying
There is a c-coloring of $G_{n, m}$.
NOTE: $\operatorname{GRID}(n, m, c)$ has $n m c$ VARS and $O\left(c n^{2} m^{2}\right)$ CLAUSES.

Our Goal

Assume that there is no c-coloring of $G_{n, m}$.

1. $\operatorname{GRID}(n, m, c)$ has a size $2^{O(c n m)}$ Tree Res Proof.
2. We show $2^{\Omega(c)}$ size is REQUIRED. THIS IS OUR POINT!
3. The lower bound is IND of n, m.

Interesting Examples

1. Fenner et al [FGGP] showed that $G_{2 c^{2}-c,, 2 c}$ is not c-colorable. Hence

$$
G R I D\left(2 c^{2}-c, 2 c\right)
$$

has $O\left(c^{3}\right)$ vars, $O\left(c^{6}\right)$ clauses but $2^{\Omega(c)}$ Tree Res proof.
2. Easy to show $G_{c^{3}, c^{3}}$ is not c-colorable.

$$
\operatorname{GRID}\left(c^{3}, c^{3}, c\right)
$$

has $O\left(c^{7}\right)$ vars, $O\left(c^{13}\right)$ clauses and $2^{\Omega(c)}$ Tree Res proof.
These are poly-in-c formulas that require $2^{\Omega(c)}$ Tree Res proofs.

GRID(n,m,c) Requires Exp Tree Res Proofs

Theorem

Let n, m, c be such that $G_{n, m}$ is not c-colorable. Let $c \geq 2$.

1. If $c \geq 2$ then any tree resolution proof of $G R I D(n, m, c) \notin S A T$ requires size $2^{0.5 c}$.
2. If $c \geq 9288$ then any tree resolution proof of $\operatorname{GRID}(n, m, c) \notin S A T$ requires size $2^{0.836 c}$.

Technique: Use Prover-Delayer Games.

Open Questions

1. Want matching upper bounds for Tree Res Proofs of $\operatorname{GRID}(n, m, c) \notin S A T$.
2. Want lower bounds on Gen Res Proofs of $\operatorname{GRID}(n, m, c) \notin S A T$.
3. Want lower bounds on in other proof systems $\operatorname{GRID}(n, m, c) \notin S A T$. (Have them for Tree cutting-Plane proofs.)

Bibliography

BGL O. Beyersdorr, N. Galesi, and M. Lauria. A lower bound for the pigeonhole principle in the tree-like resolution asymmetric prover-delayer games. Information Processing Letters, 110, 2010. The paper and a talk on it are here: http://www.cs.umd.edu/~gasarch/resolution.html.
FGGP S. Fenner, W. Gasarch, C. Glover, and S. Purewal. Rectangle free colorings of grids, 2009.
http://www.cs.umd.edu/~gasarch/papers/papers.html.
PI P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In Eleventh Symposium on Discrete Algorithms: Proceedings of SODA '00, 2000.
SP B. Steinbach and C. Posthoff. Extremely complex 4-colored rectangle-free grids: Solution of an open multiple-valued problem. In Proceedings of the Forty-Second IEEE International Symposia on Multiple-Valued Logic, 2012. http://www.informatik.tu-freiberg.de/index.php?

