The Complexity of Grid Coloring

Daniel Apon—U of MD William Gasarch—U of MD Kevin Lawler—Permanent

イロト イヨト イヨト イヨト

æ

Notation: If $n \in \mathbb{N}$ then [n] is the set $\{1, \ldots, n\}$.

Definition

 $G_{n,m}$ is the grid $[n] \times [m]$.

1. $G_{n,m}$ is *c*-colorable if there is a *c*-coloring of $G_{n,m}$ such that no rectangle has all four corners the same color.

・ 同 ト ・ ヨ ト ・ ヨ ト

2. $\chi(G_{n,m})$ is the least c such that $G_{n,m}$ is c-colorable.

A FAILED 2-Coloring of $G_{4,4}$

R	В	В	R
В	R	R	В
В	В	R	R
R	R	R	В

A 2-Coloring of G_{4,4}

R	В	В	R
В	R	R	В
В	В	R	R
R	В	R	В

・ロト ・回ト ・ヨト ・ヨト

Э

Example: a 3-Coloring of G(10,10)

EXAMPLE: A 3-Coloring of $G_{10,10}$

It is known that CANNOT 2-color $G_{10,10}$. Hence $\chi(G_{10,10}) = 3$.

- 1. Fenner, Gasarch, Glover, Purewall [FGGP] had reasons to think $G_{17,17}$ is 4-colorable but they did not have a 4-coloring.
- 2. In 2009 Gasarch offered a prize of \$289.00 for the first person to email him a 4-coloring of $G_{17,17}$.
- 3. Brian Hayes, Scientific American Math Editor, popularized the challenge.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. Lots of people worked on it.
- 2. No progress.
- 3. Finally solved in 2012 by Bernd Steinbach and Christian Posthoff [SP]. Clever, and SAT-solver, but did not generalize.

・ 同 ト ・ ヨ ト ・ ヨ ト

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere? YES!

A (1) > (1) > (1)

2. Is there a Prop Statement about Grid Coloring whose resolution proof requires exp size? YES!

Part I of Talk—NP Completeness of GCE

THERE IS AN NP-COMPLETE PROBLEM LURKING!

(A)

1. Let $c, N, M \in \mathbb{N}$. A partial mapping χ of $N \times M$ to $\{1, \ldots, c\}$ is a *extendable to a c-coloring* if there is an extension of χ to a total mapping which is a *c*-coloring of $N \times M$.

2.

$$GCE = \{(N, M, c, \chi) \mid \chi \text{ is extendable}\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

GCE is NP-complete!

												C_1	C_1	C_2	C_2	C_3	<i>C</i> ₃
												-1	- <u>-</u>	-2	-2		
	D	D	D	D	D	D	D	D	D	D	D				1	1	1
\overline{X}_4		D	D	D	D	D	D	D	D	T	F	D	D	D	D	D	F
<i>x</i> ₄		D	D	D	D	D	D	D	D	T	F	D	D	D	F	D	D
\overline{X}_3		D	D	D	D	D	D	Т	F	D	D	D	D	D	D	D	D
<i>x</i> ₃		D	D	D	D	Т	F	Т	F	D	D	D	D			D	D
\overline{X}_3		D	D	D	D	Т	F	D	D	D	D	D	F	D	D		
\overline{x}_2		D	D	T	F	D	D	D	D	D	D	D	D	F	D	D	D
<i>x</i> ₂		D	D	T	F	D	D	D	D	D	D			D	D	D	D
\overline{x}_1		T	F	D	D	D	D	D	D	D	D	D	D	D	D	F	D
<i>x</i> ₁		Т	F	D	D	D	D	D	D	D	D	F	D	D	D	D	D

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

 $(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_2 \lor x_3 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor \overline{x}_4)$

- 1. MAYBE NOT: GCE is Fixed Parameter Tractable: For fixed c GCE_c is in time $O(N^2M^2 + 2^{O(c^4)})$. But for c = 4 this is huge!
- 2. MAYBE NOT: Our result says nothing about the case where the grid is originally all blank.

Part II of Talk—Lower Bounds on Tree Resolution

YOU SAY YOU WANT A RESOLUTION!

Definition

Let $\varphi = C_1 \land \dots \land C_L$ be a CNF formula. A Resolution Proof of $\varphi \notin SAT$ is a sequence of clauses such that on each line you have either

- 1. One of the C's in φ (called an AXIOM).
- 2. $A \lor B$ if $A \lor x$ and $B \lor \neg x$ were on prior lines. Variable that is resolved on is x.

- 4 同 ト 4 ヨ ト 4 ヨ ト

3. The last line has the empty clause.

The AND of the following:

1. For $i, j \in \{1, \dots, 5\}$

 $x_{ij1} \lor x_{ij2}.$

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

The AND of the following:

1. For $i, j \in \{1, \dots, 5\}$

 $x_{ij1} \vee x_{ij2}$.

э

Interpretation: (i, j) is colored either 1 or 2.

The AND of the following:

1. For $i, j \in \{1, ..., 5\}$

 $x_{ij1} \vee x_{ij2}.$

Interpretation: (i, j) is colored either 1 or 2. 2. For $i, j, i', j' \in \{1, \dots, 5\}$

 $\neg x_{ij1} \lor \neg x_{i'j1} \lor \neg x_{ij'1} \lor \neg x_{i'j'1}$

▲撮♪ ★ 注♪ ★ 注♪

3

The AND of the following:

1. For $i, j \in \{1, \dots, 5\}$

 $x_{ij1} \vee x_{ij2}.$

Interpretation: (i, j) is colored either 1 or 2. 2. For $i, j, i', j' \in \{1, \dots, 5\}$

$$\neg x_{ij1} \lor \neg x_{i'j1} \lor \neg x_{ij'1} \lor \neg x_{ij'1}$$

Interpretation: There is no mono 1-rectangle.

The AND of the following:

1. For $i, j \in \{1, ..., 5\}$

 $x_{ij1} \vee x_{ij2}$.

Interpretation: (i, j) is colored either 1 or 2. 2. For $i, j, i', j' \in \{1, \dots, 5\}$

$$\neg x_{ij1} \lor \neg x_{i'j1} \lor \neg x_{ij'1} \lor \neg x_{ij'1}$$

Interpretation: There is no mono 1-rectangle. 3. For $i, j, i', j' \in \{1, \dots, 5\}$

$$\neg x_{ij2} \lor \neg x_{i'j2} \lor \neg x_{ij'2} \lor \neg x_{i'j'2}$$

▲圖▶ ▲屋▶ ▲屋▶

The AND of the following:

1. For $i, j \in \{1, ..., 5\}$

 $x_{ij1} \lor x_{ij2}.$

Interpretation: (i, j) is colored either 1 or 2. 2. For $i, j, i', j' \in \{1, \dots, 5\}$

$$\neg x_{ij1} \lor \neg x_{i'j1} \lor \neg x_{ij'1} \lor \neg x_{ij'1}$$

Interpretation: There is no mono 1-rectangle. 3. For $i, j, i', j' \in \{1, \dots, 5\}$

$$\neg x_{ij2} \lor \neg x_{i'j2} \lor \neg x_{ij'2} \lor \neg x_{i'j'2}$$

・ロト ・回ト ・ヨト ・ヨト

Interpretation: There is no mono 2-rectangle.

The AND of the following:

1. For $i, j \in \{1, ..., 5\}$

 $x_{ij1} \vee x_{ij2}$.

Interpretation: (i, j) is colored either 1 or 2. 2. For $i, j, i', j' \in \{1, \dots, 5\}$

 $\neg x_{ij1} \lor \neg x_{i'j1} \lor \neg x_{ij'1} \lor \neg x_{i'j'1}$

Interpretation: There is no mono 1-rectangle. 3. For $i, j, i', j' \in \{1, \dots, 5\}$

 $\neg x_{ij2} \lor \neg x_{i'j2} \lor \neg x_{ij'2} \lor \neg x_{i'j'2}$

Interpretation: There is no mono 2-rectangle.

We interpret this statement as saying There is a 2-coloring of $G_{5,5}$. This statement is known to be false. Daniel Apon—U of MD, William Gasarch—U of MD, Kevin L The Complexity of Grid Coloring

GRID(n,m,c)

Definition

Let $n, m, c \in \mathbb{N}$. GRID(n, m, c) is the AND of the following:

1. For $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$,

$$x_{ij1} \lor x_{ij2} \lor \cdots \lor x_{ijc}$$

Interpretation: (i, j) is colored either 1 or \cdots or c. 2. For $i, i' \in \{1, \dots, n\}$, $j, j' \in \{1, \dots, m\}$, $k \in \{1, \dots, c\}$,

$$\neg x_{ijk} \lor \neg x_{i'jk} \lor \neg x_{ij'k} \lor \neg x_{i'j'k}$$

Interpretation: There is no mono rectangle.

We interpret this statement as saying There is a *c*-coloring of $G_{n,m}$. NOTE: GRID(n, m, c) has *nmc* VARS and $O(cn^2m^2)$ CLAUSES. Assume that there is no *c*-coloring of $G_{n,m}$.

- 1. GRID(n, m, c) has a size $2^{O(cnm)}$ Tree Res Proof.
- 2. We show $2^{\Omega(c)}$ size is REQUIRED. THIS IS OUR POINT!

3. The lower bound is IND of n, m.

1. Fenner et al [FGGP] showed that $G_{2c^2-c,,2c}$ is not *c*-colorable. Hence

$$GRID(2c^2-c,2c)$$

has $O(c^3)$ vars, $O(c^6)$ clauses but $2^{\Omega(c)}$ Tree Res proof.

2. Easy to show G_{c^3,c^3} is not *c*-colorable.

$$GRID(c^3, c^3, c)$$

イロト イポト イヨト イヨト

has $O(c^7)$ vars, $O(c^{13})$ clauses and $2^{\Omega(c)}$ Tree Res proof. These are poly-in-*c* formulas that require $2^{\Omega(c)}$ Tree Res proofs.

Theorem

Let n, m, c be such that $G_{n,m}$ is not c-colorable. Let $c \geq 2$.

- 1. If $c \ge 2$ then any tree resolution proof of $GRID(n, m, c) \notin SAT$ requires size $2^{0.5c}$.
- 2. If $c \ge 9288$ then any tree resolution proof of $GRID(n, m, c) \notin SAT$ requires size $2^{0.836c}$.

Technique: Use Prover-Delayer Games.

・ 同下 ・ ヨト ・ ヨト

- 1. Want matching upper bounds for Tree Res Proofs of $GRID(n, m, c) \notin SAT$.
- 2. Want lower bounds on Gen Res Proofs of $GRID(n, m, c) \notin SAT$.
- 3. Want lower bounds on in other proof systems $GRID(n, m, c) \notin SAT$. (Have them for Tree cutting-Plane proofs.)

イロト イポト イヨト イヨト

3

Bibliography

- BGL O. Beyersdorr, N. Galesi, and M. Lauria. A lower bound for the pigeonhole principle in the tree-like resolution asymmetric prover-delayer games. *Information Processing Letters*, 110, 2010. The paper and a talk on it are here: http://www.cs.umd.edu/~gasarch/resolution.html.
- FGGP S. Fenner, W. Gasarch, C. Glover, and S. Purewal. Rectangle free colorings of grids, 2009.
 - http://www.cs.umd.edu/~gasarch/papers.html.
 - PI P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In *Eleventh Symposium on Discrete Algorithms: Proceedings of SODA '00*, 2000.
 - SP B. Steinbach and C. Posthoff. Extremely complex 4-colored rectangle-free grids: Solution of an open multiple-valued problem. In Proceedings of the Forty-Second IEEE International Symposia on Multiple-Valued Logic, 2012. http://www.informatik.tu-freiberg.de/index.php? option=com_content&task=view&id=35&Itemid=63