Homework 1, Morally Due Tue Feb 5, 2013
COURSE WEBSITE: http://www.cs.umd.edu/gasarch/858/S13.html (The symbol before gasarch is a tilde.)

1. (10 points) What is your name? Write it clearly. Staple your HW. When is the midterm (give Date and Time)? If you cannot make it in that day/time see me ASAP. Join the Piazza group for the course. The codename is cmsc858. Look at the link on the class webpage about projects. Come see me about a project. READ the note on the class webpage that say THIS YOU SHOULD READ that you haven't already read.
2. (20 points) Recall that the a-ary infinite Ramsey Theorem dealt with colorings of $\binom{\mathbb{N}}{a}$. We have only dealt with $a \geq 2$.
(a) Formulate the 1-ary infinite Ramsey Theorem, for c colors, and prove it.
(b) Formulate the ω-ary infinite Ramsey Theorem. (Extra Creditprove or disprove it.)

SOLUTION TO PROBLEM 2

The key to this problem was to DEFINE homog sets.

1) Given $C O L:\binom{\mathrm{N}}{1} \rightarrow[2]$, a homog set is a set of numbers that are all colored the same. Hence the statement is:
For all $C O L:\binom{\mathrm{N}}{1} \rightarrow[2]$ there is an infinite subset $A \subseteq \mathrm{~N}$ such that all the elements of A are colored the same.

OR, if you defined homog you could just say
For all $C O L:\binom{\mathrm{N}}{1} \rightarrow[2]$ there is an infinite homog subset $A \subseteq \mathrm{~N}$.
2) Given $C O L:\binom{N}{\omega} \rightarrow[2]$, a homog set is an infinite set A such that all infinite subsets of A are colored the same. Hence the statement is:
For all $C O L:\binom{\mathrm{N}}{\omega} \rightarrow[2]$ there is an infinite subset $A \subseteq \mathrm{~N}$ such that all subsets of A are colored the same.
OR, if you defined homog you could just say
For all $C O L:\binom{\mathrm{N}}{\mathrm{w}} \rightarrow[2]$ there is an infinite homog subset $A \subseteq \mathrm{~N}$.
3. (40 points) State and prove (rigorously) the c-color a-ary Ramsey Theorem. Your statement should start out for all $a \geq 1$, for all $c \geq 1, \ldots$. The proof should be by induction on a with the base case being $a=1$.

Omitted- very similar to what we did in class.
4. (40 points) Show (rigorously) that there exists a computable 2-coloring of $\binom{\mathrm{N}}{2}$ with no c.e.-in-HALT homog set. (HINT- the proof is very similar to the one you saw in class. Instead of looking at $W_{e, s}$ you look at $W_{e, s}^{H A L T_{s}}$.) (NOTE- I ALLOW THE FOLLOWING TECHNICAL ASSUMPTION: if $W_{e}^{H A L T}$ is a c.e.-in-HALT set then it can only change its mind finitely often on any one number. Formally: For every x there is an $s_{0} \in \mathbf{N}$ such that one of the two holds:
(1) $\left(\forall s \geq s_{0}\right)\left[x \in W_{e, s}^{H_{s}}{ }^{-1 T_{s}}\right]$
(2) $\left(\forall s \geq s_{0}\right)\left[x \notin W_{e, s}^{H A L T_{s}}\right]$.
)
The construction is similar to the one I did in class: just replace $W_{e, s}$ with $W_{e, s}^{K_{s}}$. But the proof that it works needs some serious changes.
I do the proof as though its the proof I did in class and then say where it differs.

We show that each requirement is eventually satisfied.
For pedagogue we first look at R_{1}.
If W_{1}^{K} is finite then R_{1} is satisfied.
Assume W_{1}^{K} is infinite. We show that R_{1}^{K} is satisfied. Let $x<y$ be the least two elements in W_{1}^{K}. Let s_{0} be the least number such that $x, y \in W_{1, s_{0}}^{K_{s_{0}}}$.
NO NO NO!!!!- It could be that for some later $s \geq s_{0}$ we have $x, y \notin$ $W_{1, s}^{K_{s}}$. ALSO it is possible that for some later $s \geq s_{0}$ some SMALLER values x^{\prime}, y^{\prime} are in $W_{1, s}^{K_{s}}$ and they will be the ones whose edges to s get colored.

It is ESSENTIAL to take x_{0} such that

- $x, y \in W_{1, s_{0}}^{K_{s_{0}}}$
- $\left(\forall s \geq s_{0}\right)\left[x, y \in W_{1, s}^{K_{s}}\right]$.
- $\left(\forall s \geq s_{0}\right)\left[0, \ldots, x-1, x+1, x+2, \ldots, y-1 \notin W_{1, s}^{K_{s}}\right]$.

NOW we have that, for ALL $s \geq s_{0}$:
$\operatorname{COL}(x, s)=R E D$
$C O L(y, s)=B L U E$
Since W_{1}^{K} is infinite there is SOME $s \geq s_{0}$ with $s \in W_{e, s}^{K_{s}}$. Hence $x, y, s \in W_{1}^{K}$ and show that W_{1}^{K} is NOT homogenous.
Can we show R_{2} is satisfied the same way? Yes but with a caveatwe won't use the least two elements of W_{2}^{K}. We'll use the least two elements of W_{2}^{K} that are bigger than the least two elements of W_{1}^{K}. We now do this rigorously and more generally.
Claim: For all e, R_{e} is satisfied:
Proof: Fix e. If W_{e}^{K} is finite then R_{e} is satisfied.
Assume W_{e}^{K} is infinite. We show that R_{e} is satisfied. Let $x_{1}<x_{2}<$ $\cdots<x_{2 e}$ be the first (numerically) $2 e$ elements of W_{e}^{K}. Let s_{0} be the least number such that

- $x_{1}, \ldots, x_{e} \in W_{1, s_{0}}^{K_{s_{0}}}$
- $\left(\forall s \geq s_{0}\right)\left[x_{1}, \ldots, x_{e} \in W_{1, s}^{K_{s}}\right]$.
- $\left(\forall s \geq s_{0}\right)\left(\forall z \in\left[x_{2 e}\right]-\left\{x_{1}, \ldots, x_{2 e}\right\}\left[z \notin W_{1, s}^{K_{s}}\right]\right.$.

KEY: for all $s \geq s_{0}$, during stage s, the requirements R_{1}, \ldots, R_{e-1} may define $\operatorname{COL}(x, s)$ for some of the $x \in\left\{x_{1}, \ldots, x_{2 e}\right\}$. But they will NOT define $C O L(x, s)$ for ALL of those x. Why? Because R_{i} only defines $\operatorname{COL}(x, s)$ for at most TWO of those x 's, and there are $e-1$ such i, so at most $2 e-2$ of those x 's have $\operatorname{COL}(x, s)$ defined. Hence there will exist x, y such that R_{e} gets to define $C O L(x, s)$ and $C O L(y, s)$. Furthermore, they will always be the SAME x, y since the R_{i} with $i<e$ have already made up their minds about the x in $\left\{x_{1}, \ldots, x_{2 e}\right\}$.
UPSHOT: There exists $x, y \in W_{e}^{K}$ such that, for all $s \geq s_{0}$,
$\operatorname{COL}(x, s)=R E D$
$C O L(y, s)=B L U E$
Since W_{e}^{K} is infinite there is SOME $s \geq s_{0}$ with $s \in W_{e}^{K}$. Hence $x, y, s \in W_{e}^{K}$ and show that W_{e} is NOT homogenous.

