Two Proofs of the 3-Hypergraph Ramsey Theorem: An Exposition

William Gasarch-U of MD

→ 同 → → 目 → → 目 →

Theorem For all COL : $\binom{N}{3} \rightarrow [2]$ there exists an infinite homog set.

(ロト (四) (ヨト (ヨ) 三日

$COL : {N \choose 3} \rightarrow [2].$ CONSTRUCTION

 $V_0 = N$, $x_0 = 1$. Assume V_{i-1} infinite, x_1, x_2, \dots, x_{i-1} , c_1, \dots, c_{i-1} are all defined.

$$\begin{array}{lll} x_i = & \mbox{the least number in } V_{i-1} \\ V_i = & V_{i-1} - \{x_i\} \mbox{ (We change this set w/o changing name.)} \\ COL^*(x,y) = & COL(x_i,x,y) \mbox{ for all } \{x,y\} \in \binom{V_i}{2} \\ V_i = & \mbox{the largest 2-homog set for } COL^* \\ c_i = & \mbox{the color of } V_i \end{array}$$

END OF CONSTRUCTION KEY: for all $y, z \in V_i$, $COL(x_i, y, z) = c_i$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We have vertices

 $x_1, x_2, \ldots,$

and associated colors

 $c_1, c_2, \ldots,$

There exists i_1, i_2, \ldots such that

$$c_{i_1}=c_{i_2}=\cdots=c_{i_k}$$

 x_{i_1}, x_{i_2}, \ldots

is homog set.

・ロン ・回 と ・ ヨン ・ ヨン

-

- 1. PRO- proof was simple since it USED Ramsey's theorem.
- 2. CON- proof used Ramsey's theorem ω times and PHP once. Hence if want to finitize it get EEEEEEENROMOUS bounds.

イロト イポト イヨト イヨト

Same Theorem:

Theorem

For all COL : $\binom{N}{3} \to [2]$ there exists an infinite homog set.

・ロト ・四ト ・ヨト ・ヨト

CONSTRUCTION

$$x_1 = 1$$

 $V_1 = N - \{x_1\}$

Assume $x_1, \ldots, x_{i-1}, V_{i-1}$, and $COL^{**}: \binom{\{x_1, \ldots, x_{i-1}\}}{2} \rightarrow \{\mathsf{RED}, \mathsf{BLUE}\}$ are defined.

 $\begin{array}{ll} x_i = & \mbox{the least element of } V_{i-1} \\ V_i = & V_{i-1} - \{x_i\} \mbox{ (We will change this w/o changing its name)}. \end{array}$

We are NOT done yet. Next slide.

We define $COL^{**}(x_1, x_i)$, $COL^{**}(x_2, x_i)$, ..., $COL^{**}(x_{i-1}, x_i)$. We also define smaller sets V_i . We keep variable name V_i throughout. For j = 1 to i - 1

- 1. $COL^* : V_i \rightarrow \{RED, BLUE\}$ is defined by $COL^*(y) = COL(x_j, x_i, y).$
- 2. Let V_i be redefined as an infinite homog set for COL^* .
- 3. $COL^{**}(x_j, x_i)$ is the color of V_i .

KEY: For all $1 \le i_1 < i_2 \le i$, for all $y \in V_i$, $COL(x_{i_1}, x_{i_2}, y) = COL^{**}(x_{i_1}, x_{i_2})$. END OF CONSTRUCTION

$$X = \{x_1, x_2, \dots, \}$$

and $COL^{**} : {X \choose 2} \rightarrow [2]$. Use RAMSEY's THEOREM ON
GRAPHS!

$$H=\{x_{i_1},\ldots,x_{i_k}\}.$$

Easy to show H is homog.

イロト イヨト イヨト イヨト

Э