
Infinite Canonical Ramsey’s Theorem
Exposition by William Gasarch

1 Introduction

We recall Ramsey’s theorem.

Convention 1.1 In this paper (1) a coloring of a graph is a coloring of the
edges of the graph. and (2) a coloring of a hypergraph is a coloring of the
edges of the hypergraph.

Def 1.2 Let c ∈ N. Let COL :
(
N
2

)
→ [c]. Let V ⊆ N. The set V is homog

if there exists a color c such that every elements of
(

V
2

)
is colored c.

Convention 1.3 We write COL(x1, . . . , xa) rather than the more formally
correct COL({x1, . . . , x1}). We do not mean to imply that x1 < · · · < xa.

The following is Ramsey’s theorem for graphs:

Theorem 1.4 For all c ∈ N, for all COL :
(
N
2

)
→ [c] , there is an infinite

homog set.

Note that Ramsey’s Theorem uses only a fixed number of colors. What if
we color

(
N
2

)
with as many colors as we like? You may say that’s just stupid—

color each edge a different color. That is true— however, your coloring has
an infinite rainbow set — every edge is different! This leads to the following
conjecture:

Def 1.5 Let COL :
(
N
2

)
→ ω. Let V ⊆ N. The set V is rainbow if every

edge in
(

V
2

)
is colored differently.

Conjecture: For every coloring of
(
N
2

)
there is either an infinite homog set

or an infinite rainbow set.
This looks good. But alas its not true. Consider the following colorings:

COL(i, j) = i.
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COL(i, j) = j.

We leave it to the reader to show that neither of these colorings has an
infinite homog set, nor an infinite rainbow set. However both lead to a certain
kind of homogeneity. We now define 4 types of homogeneity. Even rainbow
sets can be viewed as homog in this definition.

Def 1.6 Let COL :
(
N
2

)
→ ω. Let V ⊆ N.

1. V is ∅-homog (henceforth homog) if for all x1 < x2 ∈ V , and y1 < y2 ∈
V ,

COL(x1, x2) = COL(y1, y2) iff TRUE.

(This is just normal homog.)

2. V is {1}-homog (henceforth min-homog) if for all x1 < x2 ∈ V , and
y1 < y2 ∈ V ,

COL(x1, x2) = COL(y1, y2) iff x1 = y1.

3. V is {2}-homog (henceforth max-homog) if for all x1 < x2 ∈ V , and
y1 < y2 ∈ V ,

COL(x1, x2) = COL(y1, y2) iff x1 = y1.

4. V is {1, 2}-homog (henceforth rainbow) if for all x1 < x2 ∈ V and
y1 < y2 ∈ V

COL(x1, x2) = COL(y1, y2) iff x1 = y2 AND x2 = y2.

We now state the Canonical Ramsey Theorem for finite graphs [?].

Theorem 1.7 For all COL :
(
N
2

)
→ ω there is either an infinite homog set,

an infinite min-homog set, an infinite max-homog set, or an infinite rainbow
set.

We will give a proof of Theorem 1.7. We will need the hypergraph Ramsey
Theorem [?, ?, ?] for the proof.
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Def 1.8 Let COL be a coloring of
(
N
a

)
(the edges of the infinite complete

a-hypergraph). Let V ⊆ N. The set V is homog if there exists a color c such
that every edge in

(
V
a

)
is colored c.

Theorem 1.9 For all a, for all c, for all COL :
(
N
a

)
→ [c] there exists an

infinite homog set.

In Section 2 we prove lemmas that we will need. In Section 3 we give a
proof of the canonical Ramsey Theorem for graphs. In Section 4 we give an
“application.” In Section 6 we give a proof of the 3-ary canonical Ramsey
Theorem. In Section 7 we give an “application.”

2 Needed Lemmas

2.1 One Dim Infinite Can Ramsey Theorem

We need the following lemma which could be called the 1-dimensional Canon-
ical Ramsey Theorem. We leave the proof to the reader.

Def 2.1 Let V ⊆ N be infinite. If COL : V → ω then (1) a homog subset of
V relative to COL is a set that is all the same color, and (2) a rainbow subset
of V relative to COL is a set where every element has a different color.

Lemma 2.2 Let V be an countable set. Let COL : V → ω. Then there
exists either an infinite homog set or an infinite rainbow set.

2.2 A Premise that Yields a Rainbow Set

The next definition and lemma gives a way to get an infinite rainbow set
under some conditions.

Def 2.3 Let COL :
(
N
2

)
→ ω. If c is a color and v ∈ N then degc(v) is the

number of c-colored edges with an endpoint in v.

The following theorem is an infinite version of a theorem of Babai [?].

Lemma 2.4 Let X be infinite. Let COL :
(

X
2

)
→ ω. If for x ∈ X and

c ∈ ω, degc(x) ≤ 1 then there exists an infinite rainbow set.
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Proof:
Let R be a maximal rainbow set of X. This means that that R is rainbow

and

(∀y ∈ X −R)[R ∪ {y} is not a rainbow set].

Let y ∈ X −R. Why is y /∈ R? One of the following must occur:

1. There exists u ∈ R and {a, b} ∈
(

R
2

)
such that COL(u, y) = COL(a, b).

2. There exists {a, b} ∈
(

R
2

)
such that COL(a, y) = COL(b, y). This

cannot happen since then [∃c)[degc(y) ≥ 2].

We map X − R to R ×
(

R
2

)
by mapping y ∈ X − R to (u, {a, b}) as

indicated in item 1 above. This map is injective since if y1 and y2 both
map to (u, {a, b}) then COL(u, y1) = COL(u, y2 which can’t happen since
degc(u) ≤ 1.

The mapping is an injection from X − R to R ×
(

R
2

)
. If R was finite

then this would be an injection from an infinite set to a finite set which is
impossible. Hence R is infinite.

3 Proof of Can Ramsey Theorem for Graphs

Theorem 3.1 For all COL :
(
N
2

)
→ ω there is either an infinite homog set,

an infinite min-homog set, an infinite max-homog set, or an infinite rainbow
set.

Proof:
We are given COL :

(
N
3

)
→ ω. We use COL to obtain a COL′ :

(
N
4

)
→ [7].

We will use the (ordinary) 3-ary Ramsey theorem.
We define COL′(x1 < x2 < x3 < x4) by looking at COL on all

(
4
3

)
triples

of {x1, x2, x3, x4} and see how their colors compare to each other.
For each case we assume the negation of all the prior cases. In each case,

we indicate what happens if this is the color of the infinite homog set.
In all the cases below we use the following notation: if we are referring

to a set X and x ∈ X then x+ is the next element of X after x.
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1. If COL(x1, x2) = COL(x1, x3) then COL′(x1, x2, x3, x4) = 1. Assume
X is an infinite homog set of color 1. Let COL′′ : X → ω be defined
by COL′′(x) = COL(x, x+). Note that, for all y > x, COL′′(x) =
COL(x, y). Apply Lemma 2.2 to COL′′ to obtain either an infinite
homog (relative to COL′′) subset of X which is a homog set relative to
COL, or an infinite rainbow subset of X (relative to COL′′) which is
a min-homog set relative to COL.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1, x2, x3) = 2. Assume X is
an infinite homog set of color 2. By reasoning similar to Case 1, there
is either an infinite homog (rel to COL) subset of X, or an infinite
max-homog (rel to COL) subset of X.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1, x2, x3) = 3. Assume
X is an infinite homog set of color 3. Note that COL(x1, x2) =
COL(x2, x3) = · · · . We call this color RED. For all x < y, COL(x, y) =
COL(y, y+) = RED, so X is homog.

4. If none of the above occur then COL′(x1, x2, x3) = 4. Assume X is
an infinite homog set of color 4. Restrict COL to X. The reader can
easily show that, for all x ∈ X, for all colors c, degc(x) ≤ 1. Hence, by
Lemma 2.4, there is an infinite rainbow set.

4 An Application to a Points-in-the-Plane Prob-

lem

Theorem 3.1 was about colorings whose co-domain was ω. We never used
any property of ω so the theorems hold with any co-domain. We use this
fact freely.

We leave the following lemmas to the reader.

Lemma 4.1 Let P be a countable set of points in R2. Let COL :
(

P
2

)
→ R+

be defined by COL(x, y) = |x− y| (the distance between x and y). Then

1. There is no infinite homog set.

2. There is no infinite min-homog set.
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3. There is no infinite max-homog set.

Theorem 4.2 Let P be a countable set of points in R2. There exists a count-
able subset X of P such that all pairs of points in X have different distances.

Proof: Let COL :
(

P
2

)
→ R+ be defined by COL(x, y) = |x − y| (the

distance between x and y). By Theorem 3.1 and Lemma 4.1 there is an
infinite rainbow set X. This is the desired X.

Note 4.3

1. Lemma 4.1 and Theorem 4.2 both hold if you replace R2 with Rd for
any natural d ≥ 1.

2. The problem has not been studied for other metrics on Rd and for
other metric spaces. An analog of Lemma 4.1 is all you need to obtain
theorems.

5 Infinite Can Ramsey for 3-Hypergraphs

Look at the following 8 colorings of
(
N
3

)
:

• COL(i, j, k) = RED.

• COL(i, j, k) = 2i.

• COL(i, j, k) = 2j.

• COL(i, j, k) = 2k.

• COL(i, j, k) = 2i3j.

• COL(i, j, k) = 2i5k.

• COL(i, j, k) = 3j5k.

• COL(i, j, k) = 2i3j5k.

Each of these leads to a diff kind of homog. We define them and show
that you MUST get an infinite subset that has one of these types of homog.
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Def 5.1 Let COL :
(
N
3

)
→ ω. Let V ⊆ N and I ⊆ {1, 2, 3}. V is I-homog if,

for all x1 < x2 < x3, y1 < y2 < y3 ∈ V

COL(x1, x2, x3) = COL(y1, y2, y3) iff (∀i ∈ I)[xi = yi].

Examples:

1. If I = ∅ then all of the triples are the same color, usually called homog.

2. If I = {1} then the coloring depends exactly on the first coordinate.
That is, two triples are equal iff they agree on their min element.

3. If I = {1, 3} then the coloring depends on the first AND last coordinate.
So (89, 100, 1000) and (89, 103, 1000) would be the same color. More
than that— if two triples are the same color then they HAVE TO agree
on both the first and last coordinate.

4. If I = {1, 2, 3} then this is just a rainbow set.

5. One could also have defined I-homog for colorings of pairs. If we
had done that then homog would be ∅-homog, min-homog would be
1-homog, max-homog would be 2-homog, rainbow would be {1, 2}-
homog,

Notation 5.2 Formally we should use things like {1, 3}-homog. We will
instead use things like (1, 3)-homog.

5.1 A Premise that Yields a Rainbow Set

The next definition and lemma gives a way to get an infinite rainbow set
under some conditions.

Def 5.3 Let COL :
(

X
3

)
→ ω. Let c be a color and let x1, x2 ∈ X.

1. degc(x1) is the number of {y, z} ∈
(

X
2

)
such that COL(x1, y, z) = c.

2. deg<
c (x1) is the number of {y, z} ∈

(
X
2

)
such that y, z < x1 and

COL(x1, y, z) = c.

3. degc(x1, x2) is the number of z ∈
(

X
1

)
such that COL(x1, x2, z) = c.
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We show two ways to go from (∀c)(∀x, y)[degc(x, y) ≤ 1] leads to a rain-
bow set.
A Maximal Set Arg- The Ulrich Hypergraph
Ramsey Approach

Lemma 5.4 Let X be infinite. Let COL :
(

X
3

)
→ ω. Assume both of the

following hold:

• For all x ∈ X and c ∈ ω deg<
c (x) ≤ 1.

• For all {x, y} ∈
(

X
2

)
and c ∈ ω degc(x, y) ≤ 1.

Then there exists an infinite rainbow set.

Proof:
Let R be a maximal rainbow subset of X. This means that R is rainbow

and

(∀y ∈ X −R)[R ∪ {y} is not a rainbow set].

Assume R is finite. Throw out of X all of the elements of X that are less
than any element or R. Rename the new set X.

Let y ∈ X −R. Why is y /∈ R? One of the following must occur:

1. There exists {u1, u2} ∈
(

R
2

)
and {a, b, c} ∈

(
R
3

)
such that COL(y, u1, u2) =

COL(a, b, c).

2. There exists {a1, b2}, {a2, b2} ∈
(

R
2

)
such that COL(y, a1, a2) = COL(y, b1, b2).

This cannot happen:

(1) If {a1, a2}∩{b1, b2} = ∅ then we get (∃c)[deg<
c (y) ≥ 2] which violates

the premise.

(2) If (say) a1 = b1 then (∃c)[degc(y, a1) ≥ 2], which violates the
premise.

We map X−R to
(

R
2

)
×

(
R
3

)
by mapping y ∈ X−R to ({u1, u2}, {a, b, c}) as

indicated in item 1 above. This map is injective since if y1 and y2 both map
to ({u1, u2}, {a, b, c}) then COL(y1, u1, u2) = COL(y2, u1, u2) which can’t
happen since (∀c)[degc(u1, u2) ≤ 1].

This is an injection from X − R to
(

R
2

)
×

(
R
3

)
. Since R is finite we have

an injection from an infinite set to a finite set which is impossible. Hence R
is infinite.
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Lemma 5.4 seems useful. However, when we do a proof similar to that
of Theorem 3.1 we will have as the last case that there is an infinite set X
such that (∀c)(∀x, y ∈ X)[degc(x, y) ≤ 1]. To apply Lemma 5.4 we do indeed
need that condition; however, we also need (∀c)(∀x ∈ X[deg<

c (x) ≤ 1].

Lemma 5.5 Let X be an infinite set and COL :
(

X
3

)
→ ω. Assume that

(∀c)(∀x, y ∈ X)[degc(x, y) ≤ 1]. Then there exists and infinite set X ′ ⊆ X
such that (∀c)(∀x ∈ X ′)[deg<

c (x) ≤ 1].

Proof: Let COL′ :
(

X
5

)
→ [4] be defined by

COL′(x1 < x2 < x3 < x4 < x5) =

• 1 if COL(x1, x2, x5) = COL(x3, x4, x5).

• 2 if COL(x1, x3, x5) = COL(x2, x4, x5).

• 3 if COL(x1, x4, x5) = COL(x2, x3, x5).

• 4 otherwise.

Apply the 5-ary Ramsey Theorem to obtain an infinite homog set. We
claim that this set cannot be color 1,2, or 3.

Assume, by way of contradiction, that the infinite homog set is of color
1. Let the homog set be

H = {x1 < x2 < x3 < · · · }.

COL(x1, x2, x6) = COL(x4, x5, x6).
COL(x2, x3, x6) = COL(x4, x5, x6).
so COL(x1, x2, x6) = COL(x2, x3, x6). Hence (∃c)0degc(x1, x6) ≥ 2].

This is a contradiction.
Similar proofs hold for colors 2 and 3.
So we now have that an infinite homog set of color 4. It is easy to set

that, (∀c)(∀x)[deg<
c (x) ≤ 1].

Lemma 5.6 Let X be an infinite set and COL :
(

X
3

)
→ ω. Assume that

(∀c)(∀x, y ∈ X)[degc(x, y) ≤ 1]. Then there exists an infinite rainbow set.
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Proof: By Lemma 5.5 there is an infinite X ′ ⊆ X such that (∀c)(∀x ∈
X ′)[deg<

c (x) ≤ 1]. By Lemma 5.4 there is an infinite rainbow subset of X ′.

The Zbarsky Non-Naive Approach
We now use the assumption (∀c)(∀x, y)[degc(x, y) ≤ 1] to obtain a rain-

bow set in a completely different way.

Def 5.7 Let W, X, V ⊆ N. Let COL :
(

X
3

)
→ ω. W < X means (∀w ∈

W )(∀x ∈ X)[w < x].

Thought experiment: Let X be an infinite subset. Let COL :
(

X
3

)
→ ω

be such that (∀c)(∀x, y ∈ X)[degc(x, y) ≤ 1]. We want to construct a infinite
rainbow set W ⊆ X. Say that so far we have a finite nice set W ′ ⊆ X. We
want to find x ∈ X−W ′ such that W ′∪{x} is rainbow. Our fear: what if for
every x ∈ X −W , there exists a1, b1, a2, b2 ∈ W such that COL(a1, b1, x) =
COL(a2, b2, x). We now give some definitions and a lemma which will tell
how to avoid this. The intuition: We build W up carefully so that when we
put an element into it we are not just concerned with is W ∪ {x} rainbow
? but also with are there an infinite number of x′ such that W ∪ {x, x′} is
rainbow?

Def 5.8 Let W, X ⊆ N and COL :
(

W∪X
3

)
→ ω. Assume W < X (so W is

finite). Let x ∈ X.

1. x is W -stupid if

(∃a1, b1, c1, a2, b2 ∈ W )[COL(a1, b1, c1) = COL(a2, b2, x)].

Note that if W is finite there can only be a finite number of W -stupid
numbers.

2. x is W -naively bad (henceforth n.b.) if

(∃a1, b1, a2, b2 ∈ W )[COL(a1, b1, x) = COL(a2, b2, x)].

(Note that if (∀c)(∀x, y ∈ X)[degc(x, y) ≤ 1], which will be our case,
then all of the a1, b1, a2, b2 are distinct.)

3. x is (W, X)-sneaky bad if

(∀∞y ∈ X)[y is (W ∪ {x})-n.b.].
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4. W is X-nice if both of the following hold.

• W is rainbow.

• There are no W -n.b. numbers in X.

Lemma 5.9 Let W, X ⊆ N. Let COL :
(

W∪X
3

)
→ ω be such that

• ∀x, y ∈ W ∪X)(∀c)[degc(x, y) ≤ 1].

• W < X (so W is finite). Assume W is X-nice.

Then there exists x ∈ X and infinite X ′ ⊆ X such that W ∪ {x} is X ′-nice.

Proof: We seek an element x and a subset X ′. We will do a construction
to find x, X ′ and later prove that it works. The construction will look infinite,
but must eventually stop with a proper x, X ′.

Let x ∈ X. Since y is not W -n.b. but y is (W ∪ {x})-n.b. there must be
a, b, a′ ∈ W such that COL(a, b, y) = COL(a′, x, y). Since (∀c)(∀z1, z2)[degc(z1, z1) ≤
1] we know that a, b, a′, x are all distinct. Let fx(y) = (a, b, a′) where a < b.
Since W is finite there must be some (a, b, a′) such that an infinite number
of y’s map to it.

We do the following construction. We carry it out for an infinite number
of steps but later will only use a finite number of those steps.
CONSTRUCTION
Stage 0: Let X0 be X with the stupid elements removed.
Stage s + 1: We can assume that Xs is defined. Let xs is the least element
of Xs. Since W is nice we know that W ∪ {xs} is rainbow. We just ask

Is W ∪ {x1} Xs-nice? If so then GREAT, we are doe If not then we have

(∀∞y ∈ Xs)[y is W ∪ {xs}-naively bad].

First remove from Xs the finite number of y’s for which this is true.
Rename Xs with just Xs. We have

(∀y ∈ Xs)[y is W ∪ {xs}-naively bad].

Let y ∈ Xs. Since y is W ∪ {xs}-naively bad

(∃a, b, a′ ∈ W )[COL(a, b, xs) = COL(a′, xs, y)].
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(We will later call these (as, bs, a
′
s).)

Since (∀c)(∀z1, z2)[degc(z1, z1) ≤ 1] we know that a, b, a′, x are all distinct.
Let fxs(y) = (a, b, a′) where a < b. Since W is finite there must be some
(a, b, a′) such that an infinite number of y’s map to it.

Let

Xs+1 = {y | fxs(y) = (a, b, a′)}.

Note that Xs+1 has no W -stupid elements since Xs didn’t.
END OF CONSTRUCTION

The number of possible (as, bs, a
′
s) ∈ W×W×W is finite since W is finite.

Hence there must be an s < t such that (as, bs, a
′
s) = (at, bt, a

′
t) = (a, b, a′).

Let y ∈ Xt ⊇ Xs.
Since y ∈ Xs, fxs(y) = (as, bs, a

′
s) = (a, b, a′). Hence

COL(a, b, y) = COL(a′, xs, y)

Since y ∈ Xt, fxt(y) = (at, bt, a
′
t) = (a, b, a′). Hence

COL(a, b, y) = COL(a′, xt, y)

Hence
COL(a′, xs, y) = COL(a′, xt, y)

so degc(a
′, y) ≥ 2. This violates the premise of the lemma. Contradiction.

So we now know that

(∃x ∈ X)(∃∞y ∈ X)[y is not (W ∪ {x})-n.b.]

Let x be that x. Let X ′ be the infinite set of those y’s.

Lemma 5.10 Let X be infinite. Let COL :
(

X
3

)
→ ω. Assume that for

x, y ∈ X and c ∈ ω degc(x, y) ≤ 1. Then there is an infinite rainbow
W ⊆ X.

Proof: We construct a set W in stages. At every stage W is rainbow so
the final W is rainbow.
CONSTRUCTION
W0 = ∅. X0 = X.
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Stage s: Assume inductively that Ws−1 and Xs−1) exist, Xs−1 is infinite,
Ws−1 is Xs−1-nice, and Xs has no Ws-stupid elements. Then, by Lemma 5.9,
there exists x ∈ Xs−1 and X ′ ⊆ Xs−1, X ′ infinite, such that Ws−1 ∪ {x} is
X ′-nice. Let

Ws = Ws−1 ∪ {x}

Xs = X ′ − the stupid Ws-elements .

END OF CONSTRUCTION
Let W =

⋃∞
s=1 Ws.

6 Proof of Can Ramsey Theorem for 3-Hypergraphs

Theorem 6.1 For all COL :
(
N
3

)
→ ω there is an I ⊆ [3] and an infinite

I-homog set.

Proof:
We are given COL :

(
N
3

)
→ ω. We use COL to obtain COL′ :

(
N
4

)
→ [8].

We will use the 4-ary Ramsey theorem.
We define COL′(x1 < x2 < x3 < x4) by looking at COL on all

(
4
3

)
triples

of {x1, x2, x3, x4} and see how their colors compare to each other.
For each case we assume the negation of all the prior cases. In each case,

we indicate what happens if this is the color of the infinite homog set.
In all the cases below we use the following notation: if we are referring

to a set X and x ∈ X then x+ is the next element of X after x.

1. If COL(x1, x2, x3) = COL(x1, x2, x4) then COL′(x1, x2, x3, x4) = 1.
Assume X is an infinite homog set with color 1. Note that for all
x, y, z, z′ we have COL(x, y, z) = COL(x, y, z′). Let COL′′ :

(
X
2

)
→ ω

be defined by COL′′(x, y) = COL(x, y, y+). Note that, for all x <
y < z, COL′′(x, y) = COL(x, y, z). We use this fact freely. Note that
COL′′ is a coloring of pairs- WE CAN APPLY CAN RAMSEY ON
GRAPHS TO IT! One of the following must occur:

(a) There is an infinite homog set H (relative to COL′′). It is easy to
see that H is homog for COL.
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(b) There is an infinite min-homog set H (relative to COL′′). We will
show that H is 1-homog relative to COL. Let x, y, z, x′, y′, z′ ∈ H.

COL(x, y, z) = COL(x′, y′, z′) iff COL′′(x, y) = COL′′(x′, y′)

This is by the definition of COL′′ which ultimately goes back to
X being 1-homog for COL.

COL′′(x, y) = COL′′(x′, y′) iff x = x′

This is because H is 1-homog for COL′′.

(c) There is an infinite max-homog set H (relative to COL′′). H is
2-homog by a proof similar to that of case b.

(d) There is an infinite rainbow set H (relative to COL′′). We show
that H is (1,2)-homog rel to COL.

Let x, y, z, x′, y′, z′ ∈ H.

COL(x, y, z) = COL(x′, y′, z′) iff COL′′(x, y) = COL′′(x′, y′)

This is by the definition of COL′′ which ultimately goes back to
X being homog for COL with color 1.

COL′′(x, y) = COL′′(x′, y′) iff x = x′ and y = y′

This is because H is rainbow for COL′′.

2. If COL(x1, x2, x3) = COL(x1, x3, x4) then COL′(x1, x2, x3, x4) = 2.
Assume X is an infinite homog set with color 2. We first show that if
two elements of

(
X
3

)
have the same first element then they are the same

color. (This does not show that X is 1-homog since the converse need
not hold. For example, X could be ∅-homog.) Assume (1) x < y1 < z1,
(2) x < y2 < z2, and (3) x, y1, y2, z1, z2 ∈ X. We need COL(x, y1, z1) =
COL(x, y2, z2). Let w > max{z1, z2}.

COL(x, y1, z1) = COL(x, z1, z
+
1 ) = · · · = COL(x, w, w+)
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COL(x, y2, z2) = COL(x, z2, z
+
2 ) = · · · = COL(x, w, w+)

We define another auxiliary coloring COL′′ : X → ω. Let COL′′(x) =
COL(x, x+, x++). Note that, for all x < y < z, COL(x, y, z) =
COL′′(x). Apply Lemma 2.2 to COL′′ to obtain either (1) an infi-
nite homog (relative to COL′′) which is ∅-homog rel to COL, or (2) an
infinite rainbow (relative to COL′′) which is a 1-homog set relative to
COL.

3. If COL(x1, x2, x3) = COL(x2, x3, x4) then COL′(x1, x2, x3, x4) = 3.
Assume X is an infinite homog set of with color 3. We show that X
is ∅-homog (all triples are the same color). Note that all triples of
the form (x, x+, x++} have the same COL. Denote that color RED.
Assume (1) x < y < z, (2) x′ < y′ < z′, and (3) x, y, z, x′, y′, z′ ∈ X.
We need COL(x, y, z) = COL(x′, y′, z′). Note that

COL(x, y, z) = COL(y, z, z+) = COL(z, z+, z++) = RED.

By the same reasoning COL(x′, y′, z′) = RED.

4. If COL(x1, x2, x4) = COL(x1, x3, x4) then COL′(x1, x2, x3, x4) = 4.
Assume X is an infinite homog set with color 4. First we omit ev-
ery other element of X to obtain X ′. We do this so that every two
elements of X ′ have an element inbetween them in X. We let x+

be the next element in X (not X ′). Let COL′′ :
(

X′

2

)
→ ω be de-

fined by COL′(x, z) = COL(x, x+, z). Note that, for all x, y, z ∈ X ′,
COL′, (x, z) = COL(x, y, z). Note that COL′ is a coloring of pairs-
WE CAN APPLY CAN RAMSEY ON GRAPHS TO IT! The rest of
the proof is similar to the proof of Case 1 so we just say what kind of
homog set is obtained. One of the following must occur:

(a) There is an infinite homog set H (relative to COL′′). H is homog
rel to COL.

(b) There is an infinite min-homog set (relative to COL′′). H is a
1-homog set rel to COL.

(c) There is an infinite max-homog set (relative to COL′′). H is a
3-homog set rel to COL.
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(d) There is an infinite rainbow set (relative to COL′′). H is a (1,3)-
homog set rel to COL.

5. If COL(x1, x2, x4) = COL(x2, x3, x4) then COL′(x1, x2, x3, x4) = 5.
This is similar to the Case 2. We either get an infinite ∅-homog set or
an infinite 2-homog set.

6. If COL(x1, x3, x4) = COL(x2, x3, x4) then COL′(x1, x2, x3, x4) = 6.
This is similar to Case 1. We either obtain a ∅-homog set or a 2-homog
set or a 3-homog set or a (1, 3)-homog set.

7. If none of the above occur then COL′(x1, x2, x3, x4) = 7. Assume X is
an infinite homog set of this color. Note that, for all colors c, for all
x, y ∈ X, degc(x, y) ≤ 1. By Lemma 5.6 or 5.10 there is an infinite
rainbow subset of X.

7 Another Application to a Points-in-the-Plane

Problem
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