The Infinite Can Ramsey Theorem (An Exposition)

William Gasarch-U of MD

Ramsey's Theorem For Graphs

Theorem: For every COL : $\binom{N}{2} \rightarrow[c]$ there is an infinite homogenous set.

What if the number of colors was infinite?
Do not necc get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

Attempt

Theorem: For every COL: $\binom{\mathrm{N}}{2} \rightarrow \omega$ there is an infinite homogenous set OR an infinite rainbow set. VOTE:

Attempt

Theorem: For every COL: $\binom{N}{2} \rightarrow \omega$ there is an infinite homogenous set OR an infinite rainbow set.
VOTE:
FALSE:

- $\operatorname{COL}(i, j)=\min \{i, j\}$.
- $\operatorname{COL}(i, j)=\max \{i, j\}$.

Min-Homog, Max-Homog, Rainbow

Definition: Let $C O L:\binom{\mathrm{N}}{2} \rightarrow \omega$. Let $V \subseteq \mathrm{~N}$.

- V is homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff TRUE.
- V is min-homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$.
- V is max-homogenous if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $b=d$.
- V is rainbow if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$ and $b=d$.

One-Dim Can Ramsey Theorem

Lemma: Let V be an countable set. Let $C O L: V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainbow set (all diff colors).

Definition that Will Help Us

Definition Let COL : $\binom{\mathrm{N}}{2} \rightarrow \omega$. If c is a color and $v \in \mathrm{~N}$ then $\operatorname{deg}_{c}(v)$ is the number of c-colored edges with an endpoint in v.

Needed Lemma

Lemma Let X be infinite. Let COL: $\binom{X}{2} \rightarrow \omega$. If for $x \in X$ and $c \in \omega, \operatorname{deg}_{c}(x) \leq 1$ then there is an infinite rainbow set. PROVE IN GROUPS.

Proof

Let R be a MAXIMAL rainbow set of X.

$$
(\forall y \in X-R)[X \cup\{y\} \text { is not a rainbow set }] \text {. }
$$

Let $y \in X-R$. Why is $y \notin R$?

1. There exists $u \in R$ and $\{a, b\} \in\binom{R}{2}$ such that $\operatorname{COL}(y, u)=\operatorname{COL}(a, b)$.
2. There exists $\{a, b\} \in\binom{R}{2}$ such that $\operatorname{COL}(y, a)=\operatorname{COL}(y, b)$. This cannot happen since then y has color degree ≤ 1.
Map $X-R$ to $R \times\binom{ R}{2}:$ map $y \in X-R$ to $(u,\{a, b\})$ (item 1). Map is injective: if y_{1} and y_{2} both map to $(u,\{a, b\})$ then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$ but $\operatorname{deg}_{c}(u) \leq 1$. Injection from $X-R$ to $R \times\binom{ R}{2}$. If R finite then injection from an infinite set to a finite set Impossible! Hence R is infinite.

Canonical Ramsey Theorem for Graphs

Theorem: For all COL : $\binom{\mathrm{N}}{2} \rightarrow \omega$ there is either

- an infinite homogenous set,
- an infinite min-homog set,
- an infinite max-homog set, or
- an infinite rainbow set.

Proof of Can Ramsey Theorem for Graphs

Given COL: $\binom{\mathrm{N}}{2} \rightarrow \omega$. We use COL to obtain $\mathrm{COL}^{\prime}:\binom{\mathrm{N}}{3} \rightarrow[4]$ We will use the 3-ary Ramsey theorem.

$$
\begin{aligned}
& \text { 1. If } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right) \text { then } \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=1 \text {. } \\
& \text { 2. If } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \text { then } \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=2 \text {. } \\
& \text { 3. If } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \text { then } \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=3 . \\
& \text { 4. If none of the above occur then } \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=4 \text {. } \\
& \text { PROVE THIS WORKS IN CLASS }
\end{aligned}
$$

A Lemma Needed for an "Application"

Need Lemma:
Geom Lemma: Let P be a countable set of points in R^{2} Let $\operatorname{COL}:\binom{P}{2} \rightarrow \mathrm{R}^{+}$be defined by $\operatorname{COL}(x, y)=|x-y|$. Then

1. There is no infinite homogenous set.
2. There is no infinite min-homogenous set.
3. There is no infinite max-homogenous set.

PROVE IN GROUPS

An "Application"

Theorem: Let P be a countable set of points in R^{2}. There exists a countable subset X of P such that all pairs of points in X have different distances.
Proof: Let COL : $\binom{P}{2} \rightarrow \mathrm{R}^{+}$be $\operatorname{COL}(x, y)=|x-y|$.
Use Can Ramsey Theorem and Geom Lemma to obtain infinite rainbow set, hence our desired set.

Ramsey's Theorem For 3-hypergraphs

Theorem: For every COL : $\binom{\mathrm{N}}{3} \rightarrow[c]$ there is an infinite homogenous set.

What if the number of colors was infinite?
Do not necc get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

Discuss with Class what theorem might be.

I-homog and Can Ramsey for 3-hypergraphs

Definition: Let COL : $\binom{N}{3} \rightarrow \omega$. Let $I \subseteq\{1,2,3\}$. A set is I-homog if, for all $x_{1}<x_{2}<x_{3}, y_{1}<y_{2}<y_{3}$.

$$
\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{COL}\left(y_{1}, y_{2}, y_{3}\right) \text { iff }(\forall i \in I)\left[x_{i}=y_{i}\right] .
$$

Theorem: For all COL : $\binom{N}{3} \rightarrow \omega$ there exists $I \subseteq[3]$ and infinite $H \subseteq N$ such that H is I-homog.

Proof of 3-ary Ramsey Can Theorem

Given COL : $\binom{N}{3} \rightarrow \omega$. We define COL $^{\prime}:\binom{N}{4} \rightarrow$ [7] We use 4-ary Ramsey.
$\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$:

1. $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1$.
2. $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2$.
3. $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=3$.
4. $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right)=\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4$.
5. $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=5$.
6. $\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=6$.
7. If none of the above occur then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=7$.

PROVE IN GROUPS: The first 6 -cases yield I-homog sets.
WHAT ABOUT THE 7th case?

7th Case

The only case left is when

- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$

Summarize this:

7th Case

The only case left is when

- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$
- $\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$

Summarize this:

$$
(\forall c)(\forall x, y)\left[\operatorname{deg}_{c}(x, y) \leq 1\right] .
$$

NEED!

NEED the following
Statement: Let X be infinite. Let $\operatorname{COL}:\binom{X}{3} \rightarrow \omega$. Assume that $(\forall c)(\forall x, y \in X)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$. Then there is an infinite rainbow subset of X.
VOTE: YES or NO or UNKNOWN TO SCIENCE.

NEED!

NEED the following
Statement: Let X be infinite. Let $\operatorname{COL}:\binom{X}{3} \rightarrow \omega$. Assume that $(\forall c)(\forall x, y \in X)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$. Then there is an infinite rainbow subset of X.
VOTE: YES or NO or UNKNOWN TO SCIENCE. YES- its true. TRY TO PROVE IT IN GROUPS.

Why Fails

Maximal argument does not work. BILL- DISCUSS ON BOARD.

Ulrich's Solution

Ulrich's solution:

- Solve the problem
- Get Bill to bet $\$ 5.00$ you can't solve it.
- Show him solution and collect \$5.00.

Ulrich's Solution

Ulrich's solution: Stop problem before it starts.
COL: $\binom{x}{3} \rightarrow \omega$.
$(\forall c)(\forall x, y)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$.
DEFINE COL ${ }^{\prime \prime}:\binom{x}{5} \rightarrow[4]$.
$\operatorname{COL}^{\prime \prime}\left(x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)=$

- 1 if $\operatorname{COL}\left(x_{1}, x_{2}, x_{5}\right)=\operatorname{COL}\left(x_{3}, x_{4}, x_{5}\right)$.
- 2 if $\operatorname{COL}\left(x_{1}, x_{3}, x_{5}\right)=\operatorname{COL}\left(x_{2}, x_{4}, x_{5}\right)$.
- 3 if $\operatorname{COL}\left(x_{1}, x_{4}, x_{5}\right)=\operatorname{COL}\left(x_{2}, x_{3}, x_{5}\right)$.
- 4 otherwise.

SHOW IN GROUPS- Can't have inf homog set of color 1,2, or 3.

NOW can finish argument

Let Y be infinite homog set. RECAP:

1. $(\forall c)(\forall x, y \in Y)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$.
2. $\left(\forall x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)\left[\operatorname{COL}\left(x_{1}, x_{2}, x_{5}\right) \neq \operatorname{COL}\left(x_{3}, x_{4}, x_{5}\right)\right]$.
3. $\left(\forall x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)\left[\operatorname{COL}\left(x_{1}, x_{3}, x_{5}\right) \neq \operatorname{COL}\left(x_{2}, x_{4}, x_{5}\right)\right]$.
4. $\left(\forall x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)\left[\operatorname{COL}\left(x_{1}, x_{4}, x_{5}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{5}\right)\right]$.

PROVE IN GROUPS: There is an infinite Rainbow set.

PROS and CONS

Proof is DONE. PROS and CONS.

1. PRO- proof is CLEAN- only ((4 choose 3) choose 2$)+1=7$ cases.
2. PRO- Can do 4-ary- only ((5 choose 4$)$ choose 2$)+1=11$ cases.
3. PRO- Can do a-ary Can Ramsey- notation can manage the cases.
4. CON- If finitize this proof you have to use

- 2-ary Can Ramsey
- 4-ary hypergraph Ramsey
- 5-ary hypergraph Ramsey

For finite version:

- 2-ary Can Ramsey- We will deal with this FIRST.
- 4-ary hypergraph Ramsey- Stuck with that.
- 5-ary hypergraph Ramsey- TWO ways to deal with this!

GETTING RID OF 2-ary CAN RAMSEY

WE WILL GET RID OF USE OF 2-ARY CAN RAMSEY

NEW Proof of 3-ary Ramsey Can Theorem

Given COL: $\binom{N}{3} \rightarrow \omega$. We define COL $^{\prime}:\binom{N}{4} \rightarrow[8]$. We use 4-ary Ramsey.
$\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$: Abbreviate $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$ by $123=124$. Abbreviate NOTHING ELSE EQUAL by NEE

1. $123=134 \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1$.
2. $124=234 \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2$.
3. $123=234 \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=3$.
4. $123=124$, NEE $\rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4$.
5. $134=234, \mathrm{NEE} \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=5$.
6. $134=124, \mathrm{NEE} \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=6$.
7. $123=124,134=234,124 \neq 134 \rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=7$.

PROVE IN GROUPS. IF GET DONE THEN LOOK AT REMAINING CASES.

Remaining Cases

What is true of cases that are left?

1. $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}, x_{4}\right)$ (Shorthand: $\left.123 \neq 134\right)$.
2. $\operatorname{COL}\left(x_{1}, x_{2}, x_{4}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$ (Shorthand: $\left.124 \neq 234\right)$.
3. $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}, x_{4}\right)$ (Shorthand: $\left.123 \neq 234\right)$.

Need to look at ALL combinations of $(123,124),(124,134)$, (134, 234).

Table

$123=? 124$	$124=? 134$	$134=? 234$	Comment
Y	Y	Y	
Y	Y	N	
Y	N	Y	
Y	N	N	
N	Y	Y	
N	Y	N	
N	N	Y	
N	N	N	

PROVE IN GROUPS.

Table Filled in

$123=? 124$	$124=? 134$	$134=? 234$	Comment
Y	Y	Y	$123=134$
Y	Y	N	$123=134$
Y	N	Y	COVERED exactly
Y	N	N	An NEE case
N	Y	Y	$124=234$
N	Y	N	An NEE case
N	N	Y	An NEE case
N	N	N	Color 8-Rainbow

So we are DONE! Got rid of 2-ary Can Ramsey Use!

GETTING RID OF 5-ary RAMSEY

WE WILL GET RID OF USE OF 5-ARY RAMSEY

1. We have an infinite set with $\operatorname{deg}_{c}(x, y) \leq 1$.
2. Want an infinite Rainbow set.
3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:
4. We have an infinite set with $\operatorname{deg}_{c}(x, y) \leq 1$.
5. Want an infinite Rainbow set.
6. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:

- Finite version would have enormous bounds.

1. We have an infinite set with $\operatorname{deg}_{c}(x, y) \leq 1$.
2. Want an infinite Rainbow set.
3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:

- Finite version would have enormous bounds.
- Costs me $\$ 5.00$ everytime I use it. (Douglas has great copyright lawyer.)

Our Problem

Given COL: $\binom{N}{3} \rightarrow \omega$ with $(\forall c)(\forall x, y)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$ Show there exists an infinite rainbow set.

Our Biggest Fear

PLAN: build the set W. Have finite W_{s}. Want to add to it. WHAT IF

$$
\left(\forall x \notin W_{s}\right)\left(\exists a_{1}, b_{1}, a_{2}, b_{2} \in W_{s}\right)\left[\operatorname{COL}\left(a_{1}, b_{a}, x\right)=\operatorname{COL}\left(a_{2}, b_{2}, x\right)\right]
$$

Then can't add anything to W_{s}.

Naively Bad and Sneaky Bad

Definition: W finite, X infinite, $W<X$. Let $C O L:\binom{W \cup X}{3} \rightarrow \omega$. $x \in X$.

1. x is W-naively bad if

$$
\left(\exists a_{1}, b_{1}, a_{2}, b_{2} \in W\right)\left[\operatorname{COL}\left(a_{1}, b_{1}, x\right)=\operatorname{COL}\left(a_{2}, b_{2}, x\right)\right] .
$$

2. x is (W, X)-sneaky bad if

$$
\left(\forall^{\infty} y \in X\right)[y \text { is }(W \cup\{x\}) \text {-naively bad }] .
$$

Avoid Sneaky Bad

Definition: W finite, X infinite, $W<X$. Let $C O L:\binom{W \cup X}{3} \rightarrow \omega$. $x \in X . W$ is X-nice if

1. W is rainbow, and
2. $(\forall x \in X)[x$ is not naively bad $]$.

KEY: While construction W we want to make sure that each W_{s} is nice.

Key Lemma

Lemma: Let $W, X \subseteq \mathrm{~N}$. Let $\operatorname{COL}:\binom{W \cup X}{3} \rightarrow \omega$ be such that

- $\forall x, y \in W \cup X)(\forall c)\left[\operatorname{deg}_{c}(x, y) \leq 1\right]$.
- $W<X$ (so W is finite). Assume W is X-nice.

Then there exists $x \in X$ and infinite $X^{\prime} \subseteq X$ such that $W \cup\{x\}$ is X^{\prime}-nice.

TRY TO PROVE IN GROUPS.

Key Lemma

Proof:
Inductively no $x \in X$ is naively bad.
Remove the finite number of $x \in X$ s.t.
$\left(\exists a_{1}, b_{1}, c_{1}, a_{2}, b_{2} \in W\right)\left[\operatorname{COL}\left(a_{1}, b_{1}, c_{1}\right)=\operatorname{COL}\left(a_{2}, b_{2}, x\right)\right]$
Rename set X. Have $(\forall x \in X)[W \cup\{x\}$ is rainbow].

GOOD NEWS- adding any x keeps rainbow.
CALLENGE: We need an x that is not sneaky bad.

Need x not sneaky bad

If THERE IS an x NOT sneaky bad then great:
W gets $W \cup\{x\}$.
$X=\{y \in X \mid y$ is not $(W \cup\{x\})$-naively bad $\}$.
X is infinite since x was not W-sneaky bad.
If THERE IS NO SUCH x then goto next slide (This will NOT be a contradiction.)

ALL x are Sneaky Bad

Assume that ALL x are (W, X)-sneaky bad. $(\forall x \in X)[W \cup\{x\}$ is NOT nice]. WHY?
$(\forall x \in X)\left(\forall^{\infty} y \in X\right)[y$ is naively bad $]$.
$\left.(\forall x \in X) \mid \forall^{\infty} y \in X\right)\left(\exists a, b, a^{\prime} \in W\right)\left[\operatorname{COL}(a, b, y)=\operatorname{COL}\left(a^{\prime}, x, y\right)\right]$

Infinite Sequence of x 's

$(\forall x \in X)\left(\forall^{\infty} y \in X\right)\left(\exists a, b, a^{\prime} \in W\right)\left[\operatorname{COL}(a, b, y)=\operatorname{COL}\left(a^{\prime}, x, y\right)\right]$ ABBREVIATE by COL by C $x_{1}, x_{2}, x_{3}, \ldots$ are the elements of X in order.
$\left(a_{1}<b_{1}\right), a_{1}^{\prime} \in W^{3}$ s.t. $(\exists \infty y \in X)\left[C\left(a_{1}, b_{1}, y\right)=C\left(a_{1}^{\prime}, x_{1}, y\right)\right]$ $Y_{1}=\left\{y \mid C\left(a_{1}, b_{1}, y\right)=C\left(a_{1}^{\prime}, x_{1}, y\right)\right\}$
NOTE: $\left(\forall y \in Y_{1}\right)\left[C\left(a_{1}, b_{1}, y\right)=C\left(a_{1}^{\prime}, x_{1}, y\right)\right]$
$\left(a_{2}<b_{2}\right), a_{2}^{\prime} \in W^{3}$ s.t. $\left(\exists^{\infty} y \in Y_{1}\right)\left[C\left(a_{2}, b_{2}, y\right)=C\left(a_{2}^{\prime}, x_{2}, y\right)\right]$ $Y_{2}=\left\{y \mid C\left(a_{2}, b_{2}, y\right)=C\left(a_{2}^{\prime}, x_{2}, y\right)\right\}$
NOTE: $\left(\forall y \in Y_{2}\right)\left[C\left(a_{2}, b_{2}, y\right)=C\left(a_{2}^{\prime}, x_{2}, y\right)\right]$
$\left(a_{3}<b_{3}\right), a_{3}^{\prime} \in W^{3}$ s.t. $\left(\exists^{\infty} y \in Y_{2}\right)\left[C\left(a_{3}, b_{3}, y\right)=C\left(a_{3}^{\prime}, x_{3}, y\right)\right]$ $Y_{3}=\left\{y \mid C\left(a_{3}, b_{3}, y\right)=C\left(a_{3}^{\prime}, x_{3}, y\right)\right\}$
NOTE: $\left(\forall y \in Y_{3}\right)\left[C\left(a_{3}, b_{3}, y\right)=C\left(a_{3}^{\prime}, x_{3}, y\right)\right]$
NOTE $Y_{1} \supseteq Y_{2} \supseteq Y_{3} \cdots$ and all infinite.

Infinite Sequence of x 's

Look at $\left(\left(a_{1}<b_{1}\right), a_{1}^{\prime}\right),\left(\left(a_{2}<b_{2}\right), a_{2}^{\prime}\right), \ldots$.
There exists $i<j$ s.t. $\left(a_{i}<b_{i}\right), a_{i}^{\prime},\left(a_{j}<b_{j}\right), a_{j}^{\prime}=\left(a, b, a^{\prime}\right)$.
$\left(\forall y \in Y_{i}\right)\left[\operatorname{COL}\left(a_{i}, b_{i}, y\right)=\operatorname{COL}\left(a_{i}^{\prime}, x_{i}, y\right)\right]$
$\left(\forall y \in Y_{j}\right)\left[\operatorname{COL}\left(a_{j}, b_{j}, y\right)=\operatorname{COL}\left(a_{j}^{\prime}, x_{j}, y\right)\right]$
Since $Y_{j} \subseteq Y_{i}$ and $a_{i}=a_{j}=a, b_{i}=b_{j}=b, a_{i}^{\prime}=a_{j}^{\prime}=a^{\prime}$
$\left(\forall y \in Y_{j}\right)\left[\operatorname{COL}(a, b, y)=\operatorname{COL}\left(a^{\prime}, x_{i}, y\right)\right]$
$\left(\forall y \in Y_{j}\right)\left[\operatorname{COL}(a, b, y)=\operatorname{COL}\left(a^{\prime}, x_{j}, y\right)\right]$
So $(\exists c)\left[\operatorname{deg}_{c}\left(a^{\prime}, y\right) \geq 2\right]$.
CONTRADICTION!! Hence some x is not sneaky bad.
Note- proof is constructive- do the construction until get a repeat and then you have your X^{\prime} and any x left will work.

UPSHOT

We have a proof of Inf Can 3-ary Ramsey that only uses:

- 1-ary can Ramsey
- 4-ary Ramsey.

Finite version yields the following:
Theorem: For all k there exists n such that for any COL : $\binom{[n]}{3} \rightarrow \omega$ there exists $I \subseteq\{1,2,3\}$, and a set H of size k, such that H is I-homog. There is a poly p such that $n \leq R_{4}(p(k))$.

Goal

We want:
Theorem: If P is a countably infinite set of points in the plane, no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT.

NEW

Lemma: Let $P=\left\{p_{1}, p_{2}, \ldots\right\}$ be a countable set of points in R^{2}, no three collinear. Define COL: $\binom{N}{3}$ via
$\operatorname{COL}(i, j, k)=\operatorname{AREA}\left(p_{i}, p_{j}, p_{k}\right)$. For $I \subset\{1,2,3\} \operatorname{COL}$ has no I-homog set of size 6.

PROOF

Assume, BWOC, there exists an I-homog set of size 6. Can take I-homog set $\{1,2,3,4,5,6\}$.
Case 1: $I=\{1\},\{1,2\}$, or $\{2\}$.
$\operatorname{AREA}\left(p_{1}, p_{2}, p_{4}\right)=\operatorname{AREA}\left(p_{1}, p_{2}, p_{5}\right) . p_{4}$ and $p_{5}:(1)$ on a line parallel to $p_{1} p_{2}$, or (2) on different sides of $p_{1} p_{2}$. In the later case the midpoint of $p_{4} p_{5}$ is on $p_{1} p_{2}$.
$\operatorname{AREA}\left(p_{1}, p_{3}, p_{4}\right)=\operatorname{AREA}\left(p_{1}, p_{3}, p_{5}\right) . p_{4}$ and $p_{5}:(1)$ on a line parallel to $p_{1} p_{3}$, or (2) are on different sides of $p_{1} p_{3}$. In the later case the midpoint of $p_{4} p_{5}$ is on $p_{1} p_{3}$.
$\operatorname{AREA}\left(p_{2}, p_{3}, p_{4}\right)=\operatorname{AREA}\left(p_{2}, p_{3}, p_{5}\right) . p_{4}$ and $p_{5}:(1)$ on a line parallel to $p_{2} p_{3}$, or (2) on different sides of $p_{2} p_{3}$. In the later case the midpoint of $p_{4} p_{5}$ is on $p_{2} p_{3}$.

PROOF

CASES:

- Two of these cases have p_{4}, p_{5} on the same side of the line. We can assume that p_{4}, p_{5} are on a line parallel to both $p_{1} p_{2}$ and $p_{1} p_{3}$. Since p_{1}, p_{2}, p_{3} are not collinear there is no such line.
- Two of these cases have p_{4}, p_{5} on opposite sides of the line. We can assume that the midpoint of $p_{4} p_{5}$ is on both $p_{1} p_{2}$ and $p_{1} p_{3}$. Since p_{1}, p_{2}, p_{3} are not collinear the only point on both $p_{1} p_{2}$ and $p_{1} p_{3}$ is p_{1}. So the midpoint of p_{4}, p_{5} is p_{1}. Thus p_{4}, p_{1}, p_{5} are collinear which is a contradiction.

OTHER CASES

For $I=\{1\},\{1,2\}$, or $\{2\}$ we used the line-point pairs

$$
\left\{p_{1} p_{2}, p_{1} p_{3}, p_{2} p_{3}\right\} \times\left\{p_{4}, p_{5}\right\} .
$$

For the rest of the cases we just specify which line-point pairs to use.
Case 2: $I=\{3\}$ or $\{2,3\}$. Use

$$
\left\{p_{4} p_{5}, p_{3} p_{5}, p_{3} p_{4}\right\} \times\left\{p_{1}, p_{2}\right\} .
$$

Case 3: $I=\{1,3\}$ Use

$$
\left\{p_{1} p_{4}, p_{1} p_{5}, p_{1} p_{6}\right\} \times\left\{p_{2}, p_{3}\right\}
$$

This is the only case that needs 6 points.

Theorem

Theorem: If P is a countably infinite set of points in the plane, no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT. Proof: Use Geom Lemma and 3-can Ramsey!

What about 3-d?

For 3-d the Can Ramsey Theory is fine, but we need Geom Lemma. KNOWN:
Lemma: Let C_{1}, C_{2}, C_{3} be three cylinders with no pair of parallel axis. Then $C_{1} \cap C_{2} \cap C_{3}$ consists of at most 8 points.

Geom Lemma

Lemma: Let $P=\left\{p_{1}, p_{2}, \ldots\right\}$ be a countably infinite set of points in R^{3}, no three collinear. Color $\binom{\mathrm{N}}{3}$ via
$\operatorname{COL}(i, j, k)=\operatorname{AREA}\left(p_{i}, p_{j}, p_{k}\right)$. This coloring has no homog set of size 13.

PROOF

Assume, BWOC, that there exists an I-homog set of size 13 . We take $\{1, \ldots, 13\}$.
Case 1: $I=\{1\},\{1,2\}$, or $\{2\}$.
$\operatorname{AREA}\left(p_{1}, p_{2}, p_{4}\right)=\operatorname{AREA}\left(p_{1}, p_{2}, p_{5}\right)=\cdots=\operatorname{AREA}\left(p_{1}, p_{2}, p_{12}\right)$.
So p_{4}, \ldots, p_{12} are on a cylinder with axis $p_{1} p_{2}$.
$\operatorname{AREA}\left(p_{1}, p_{3}, p_{4}\right)=\operatorname{AREA}\left(p_{1}, p_{3}, p_{5}\right)=\cdots=\operatorname{AREA}\left(p_{1}, p_{3}, p_{12}\right)$.
So p_{4}, \ldots, p_{12} are on a cylinder with axis $p_{1} p_{3}$.
$\operatorname{AREA}\left(p_{2}, p_{3}, p_{4}\right)=\operatorname{AREA}\left(p_{2}, p_{3}, p_{5}\right)=\cdots=\operatorname{AREA}\left(p_{2}, p_{3}, p_{12}\right)$.
so p_{4}, \ldots, p_{12} are on a cylinder with axis $p_{2} p_{3}$.
p_{1}, p_{2}, p_{3} not collinear, so 3 cylinders have intersection ≤ 8.
However, we just showed 9. Contradiction.

PROOF

For $I=\{1\},\{1,2\}$, or $\{2\}$ we used the line-point pairs

$$
\left\{p_{1} p_{2}, p_{1} p_{3}, p_{2} p_{3}\right\} \times\left\{p_{4}, \ldots, p_{12}\right\}
$$

For the rest of the cases we just specify which line-point pairs to use.

Case 2: $I=\{3\}$ or $\{2,3\}$. Use

$$
\left\{p_{11} p_{12}, p_{10} p_{12}, p_{10} p_{11}\right\} \times\left\{p_{1}, \ldots, p_{9}\right\}
$$

Case 3: $I=\{1,3\}$ Use

$$
\left\{p_{1} p_{11}, p_{1} p_{12}, p_{1} p_{13}\right\} \times\left\{p_{2}, \ldots, p_{10}\right\}
$$

This is the only case that needs 13 points.

Theorem

Theorem: If P is a countably infinite set of points in the R^{3}, no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT. Proof: Use Geom Lemma and 3-can Ramsey!

Generalize to d dimensions?

To get a similar theorem in R^{d} for $d \geq 3$ need Geometric Lemmas. OPEN!

