
The Infinite Can Ramsey Theorem (An
Exposition)

William Gasarch-U of MD

William Gasarch-U of MD The Infinite Can Ramsey Theorem (An Exposition)



Ramsey’s Theorem For Graphs

Theorem: For every COL :
(N

2

)
→ [c] there is an infinite

homogenous set.

What if the number of colors was infinite?

Do not necc get a homog set since could color EVERY edge
differently. But then get infinite rainbow set.
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Attempt

Theorem: For every COL :
(N

2

)
→ ω there is an infinite

homogenous set OR an infinite rainbow set.
VOTE:

FALSE:

I COL(i , j) = min{i , j}.
I COL(i , j) = max{i , j}.

William Gasarch-U of MD The Infinite Can Ramsey Theorem (An Exposition)



Attempt

Theorem: For every COL :
(N

2

)
→ ω there is an infinite

homogenous set OR an infinite rainbow set.
VOTE:
FALSE:

I COL(i , j) = min{i , j}.
I COL(i , j) = max{i , j}.

William Gasarch-U of MD The Infinite Can Ramsey Theorem (An Exposition)



Min-Homog, Max-Homog, Rainbow

Definition: Let COL :
(N

2

)
→ ω. Let V ⊆ N.

I V is homogenous if COL(a, b) = COL(c , d) iff TRUE .

I V is min-homogenous if COL(a, b) = COL(c , d) iff a = c .

I V is max-homogenous if COL(a, b) = COL(c , d) iff b = d .

I V is rainbow if COL(a, b) = COL(c , d) iff a = c and b = d .
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One-Dim Can Ramsey Theorem

Lemma: Let V be an countable set. Let COL : V → ω. Then
there exists either an infinite homog set (all the same color) or an
infinite rainbow set (all diff colors).
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Definition that Will Help Us

Definition Let COL :
(N

2

)
→ ω. If c is a color and v ∈ N then

degc(v) is the number of c-colored edges with an endpoint in v .
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Needed Lemma

Lemma Let X be infinite. Let COL :
(X

2

)
→ ω. If for x ∈ X and

c ∈ ω, degc(x) ≤ 1 then there is an infinite rainbow set.
PROVE IN GROUPS.
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Proof

Let R be a MAXIMAL rainbow set of X .

(∀y ∈ X − R)[X ∪ {y} is not a rainbow set].

Let y ∈ X − R. Why is y /∈ R?

1. There exists u ∈ R and {a, b} ∈
(R

2

)
such that

COL(y , u) = COL(a, b).

2. There exists {a, b} ∈
(R

2

)
such that COL(y , a) = COL(y , b).

This cannot happen since then y has color degree ≤ 1.

Map X − R to R ×
(R

2

)
: map y ∈ X − R to (u, {a, b}) (item 1).

Map is injective: if y1 and y2 both map to (u, {a, b}) then
COL(y1, u) = COL(y2, u) but degc(u) ≤ 1.
Injection from X − R to R ×

(R
2

)
. If R finite then injection from an

infinite set to a finite set Impossible! Hence R is infinite.
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Canonical Ramsey Theorem for Graphs

Theorem: For all COL :
(N

2

)
→ ω there is either

I an infinite homogenous set,

I an infinite min-homog set,

I an infinite max-homog set, or

I an infinite rainbow set.
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Proof of Can Ramsey Theorem for Graphs

Given COL :
(N

2

)
→ ω. We use COL to obtain COL′ :

(N
3

)
→ [4]

We will use the 3-ary Ramsey theorem.

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1, x2, x3) = 1.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1, x2, x3) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1, x2, x3) = 3.

4. If none of the above occur then COL′(x1, x2, x3) = 4.

PROVE THIS WORKS IN CLASS
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A Lemma Needed for an “Application”

Need Lemma:
Geom Lemma: Let P be a countable set of points in R2 Let
COL :

(P
2

)
→ R+ be defined by COL(x , y) = |x − y |. Then

1. There is no infinite homogenous set.

2. There is no infinite min-homogenous set.

3. There is no infinite max-homogenous set.

PROVE IN GROUPS
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An “Application”

Theorem: Let P be a countable set of points in R2. There exists
a countable subset X of P such that all pairs of points in X have
different distances.
Proof: Let COL :

(P
2

)
→ R+ be COL(x , y) = |x − y |.

Use Can Ramsey Theorem and Geom Lemma to obtain infinite
rainbow set, hence our desired set.
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Ramsey’s Theorem For 3-hypergraphs

Theorem: For every COL :
(N

3

)
→ [c] there is an infinite

homogenous set.

What if the number of colors was infinite?

Do not necc get a homog set since could color EVERY edge
differently. But then get infinite rainbow set.

Discuss with Class what theorem might be.
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I -homog and Can Ramsey for 3-hypergraphs

Definition: Let COL :
(N

3

)
→ ω. Let I ⊆ {1, 2, 3}. A set is

I -homog if, for all x1 < x2 < x3, y1 < y2 < y3.

COL(x1, x2, x3) = COL(y1, y2, y3) iff (∀i ∈ I )[xi = yi ].

Theorem: For all COL :
(N

3

)
→ ω there exists I ⊆ [3] and infinite

H ⊆ N such that H is I -homog.
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Proof of 3-ary Ramsey Can Theorem

Given COL :
(N

3

)
→ ω. We define COL′ :

(N
4

)
→ [7] We use 4-ary

Ramsey.
COL′(x1, x2, x3, x4):

1. COL(x1, x2, x3) = COL(x1, x2, x4) → COL′(x1, x2, x3, x4) = 1.

2. COL(x1, x2, x3) = COL(x1, x3, x4) → COL′(x1, x2, x3, x4) = 2.

3. COL(x1, x2, x3) = COL(x2, x3, x4) → COL′(x1, x2, x3, x4) = 3.

4. COL(x1, x2, x4) = COL(x1, x3, x4) → COL′(x1, x2, x3, x4) = 4.

5. COL(x1, x2, x4) = COL(x2, x3, x4) → COL′(x1, x2, x3, x4) = 5.

6. COL(x1, x3, x4) = COL(x2, x3, x4) → COL′(x1, x2, x3, x4) = 6.

7. If none of the above occur then COL′(x1, x2, x3, x4) = 7.

PROVE IN GROUPS: The first 6-cases yield I -homog sets.
WHAT ABOUT THE 7th case?
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7th Case

The only case left is when

I COL(x1, x2, x3) 6= COL(x1, x2, x4)

I COL(x1, x2, x3) 6= COL(x1, x3, x4)

I COL(x1, x2, x3) 6= COL(x2, x3, x4)

I COL(x1, x2, x4) 6= COL(x1, x3, x4)

I COL(x1, x2, x4) 6= COL(x2, x3, x4)

I COL(x1, x3, x4) 6= COL(x2, x3, x4)

Summarize this:

(∀c)(∀x , y)[degc(x , y) ≤ 1].
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NEED!

NEED the following
Statement: Let X be infinite. Let COL :

(X
3

)
→ ω. Assume that

(∀c)(∀x , y ∈ X )[degc(x , y) ≤ 1]. Then there is an infinite rainbow
subset of X .
VOTE: YES or NO or UNKNOWN TO SCIENCE.

YES- its true. TRY TO PROVE IT IN GROUPS.
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Why Fails

Maximal argument does not work.
BILL- DISCUSS ON BOARD.
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Ulrich’s Solution

Ulrich’s solution:

I Solve the problem

I Get Bill to bet $5.00 you can’t solve it.

I Show him solution and collect $5.00.
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Ulrich’s Solution

Ulrich’s solution: Stop problem before it starts.
COL :

(X
3

)
→ ω.

(∀c)(∀x , y)[degc(x , y) ≤ 1].
DEFINE COL′′ :

(X
5

)
→ [4].

COL′′(x1 < x2 < x3 < x4 < x5) =

I 1 if COL(x1, x2, x5) = COL(x3, x4, x5).

I 2 if COL(x1, x3, x5) = COL(x2, x4, x5).

I 3 if COL(x1, x4, x5) = COL(x2, x3, x5).

I 4 otherwise.

SHOW IN GROUPS- Can’t have inf homog set of color 1,2, or 3.
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NOW can finish argument

Let Y be infinite homog set. RECAP:

1. (∀c)(∀x , y ∈ Y )[degc(x , y) ≤ 1].

2. (∀x1 < x2 < x3 < x4 < x5)[COL(x1, x2, x5) 6= COL(x3, x4, x5)].

3. (∀x1 < x2 < x3 < x4 < x5)[COL(x1, x3, x5) 6= COL(x2, x4, x5)].

4. (∀x1 < x2 < x3 < x4 < x5)[COL(x1, x4, x5) 6= COL(x2, x3, x5)].

PROVE IN GROUPS: There is an infinite Rainbow set.
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PROS and CONS

Proof is DONE. PROS and CONS.

1. PRO- proof is CLEAN- only ((4 choose 3) choose 2)+1 = 7
cases.

2. PRO- Can do 4-ary- only ((5 choose 4) choose 2)+1 = 11
cases.

3. PRO- Can do a-ary Can Ramsey- notation can manage the
cases.

4. CON- If finitize this proof you have to use
I 2-ary Can Ramsey
I 4-ary hypergraph Ramsey
I 5-ary hypergraph Ramsey
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PLAN

For finite version:

I 2-ary Can Ramsey- We will deal with this FIRST.

I 4-ary hypergraph Ramsey- Stuck with that.

I 5-ary hypergraph Ramsey- TWO ways to deal with this!
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GETTING RID OF 2-ary CAN RAMSEY

WE WILL GET RID OF USE OF 2-ARY CAN RAMSEY
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NEW Proof of 3-ary Ramsey Can Theorem

Given COL :
(N

3

)
→ ω. We define COL′ :

(N
4

)
→ [8]. We use 4-ary

Ramsey.
COL′(x1, x2, x3, x4): Abbreviate COL(x1, x2, x3) = COL(x1, x3, x4)
by 123=124. Abbreviate NOTHING ELSE EQUAL by NEE

1. 123 = 134 → COL′(x1, x2, x3, x4) = 1.

2. 124 = 234 → COL′(x1, x2, x3, x4) = 2.

3. 123 = 234 → COL′(x1, x2, x3, x4) = 3.

4. 123 = 124, NEE → COL′(x1, x2, x3, x4) = 4.

5. 134 = 234, NEE→ COL′(x1, x2, x3, x4) = 5.

6. 134 = 124, NEE→ COL′(x1, x2, x3, x4) = 6.

7. 123 = 124, 134 = 234, 124 6= 134 → COL′(x1, x2, x3, x4) = 7.

PROVE IN GROUPS. IF GET DONE THEN LOOK AT
REMAINING CASES.
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Remaining Cases

What is true of cases that are left?

1. COL(x1, x2, x3) 6= COL(x1, x3, x4) (Shorthand: 123 6= 134).

2. COL(x1, x2, x4) 6= COL(x2, x3, x4) (Shorthand: 124 6= 234).

3. COL(x1, x2, x3) 6= COL(x2, x3, x4) (Shorthand: 123 6= 234).

Need to look at ALL combinations of (123, 124), (124, 134),
(134, 234).
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Table

123 = ?124 124 = ?134 134 = ?234 Comment

Y Y Y

Y Y N

Y N Y

Y N N

N Y Y

N Y N

N N Y

N N N

PROVE IN GROUPS.
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Table Filled in

123 =? 124 124 =? 134 134 =? 234 Comment

Y Y Y 123=134

Y Y N 123=134

Y N Y COVERED exactly

Y N N An NEE case

N Y Y 124=234

N Y N An NEE case

N N Y An NEE case

N N N Color 8–Rainbow

So we are DONE! Got rid of 2-ary Can Ramsey Use!
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GETTING RID OF 5-ary RAMSEY

WE WILL GET RID OF USE OF 5-ARY RAMSEY
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RECAP

1. We have an infinite set with degc(x , y) ≤ 1.

2. Want an infinite Rainbow set.

3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph
Ramsey. Elegant! Pedagogically great! But two drawbacks:

I Finite version would have enormous bounds.
I Costs me $5.00 everytime I use it. (Douglas has great

copyright lawyer.)
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Our Problem

Given COL :
(N

3

)
→ ω with (∀c)(∀x , y)[degc(x , y) ≤ 1]

Show there exists an infinite rainbow set.
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Our Biggest Fear

PLAN: build the set W . Have finite Ws . Want to add to it.
WHAT IF

(∀x /∈ Ws)(∃a1, b1, a2, b2 ∈ Ws)[COL(a1, ba, x) = COL(a2, b2, x)]

Then can’t add anything to Ws .
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Naively Bad and Sneaky Bad

Definition: W finite, X infinite, W < X . Let COL :
(W∪X

3

)
→ ω.

x ∈ X .

1. x is W-naively bad if

(∃a1, b1, a2, b2 ∈ W )[COL(a1, b1, x) = COL(a2, b2, x)].

2. x is (W ,X )-sneaky bad if

(∀∞y ∈ X )[y is (W ∪ {x})-naively bad].
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Avoid Sneaky Bad

Definition: W finite, X infinite, W < X . Let COL :
(W∪X

3

)
→ ω.

x ∈ X . W is X -nice if

1. W is rainbow, and

2. (∀x ∈ X )[x is not naively bad ].

KEY: While construction W we want to make sure that each Ws is
nice.
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Key Lemma

Lemma: Let W ,X ⊆ N. Let COL :
(W∪X

3

)
→ ω be such that

I ∀x , y ∈ W ∪ X )(∀c)[degc(x , y) ≤ 1].

I W < X (so W is finite). Assume W is X -nice.

Then there exists x ∈ X and infinite X ′ ⊆ X such that W ∪ {x} is
X ′-nice.

TRY TO PROVE IN GROUPS.
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Key Lemma

Proof:
Inductively no x ∈ X is naively bad.

Remove the finite number of x ∈ X s.t.
(∃a1, b1, c1, a2, b2 ∈ W )[COL(a1, b1, c1) = COL(a2, b2, x)]

Rename set X . Have
(∀x ∈ X )[W ∪ {x} is rainbow].

GOOD NEWS- adding any x keeps rainbow.
CALLENGE: We need an x that is not sneaky bad.
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Need x not sneaky bad

If THERE IS an x NOT sneaky bad then great:
W gets W ∪ {x}.
X = {y ∈ X | y is not (W ∪ {x})-naively bad}.
X is infinite since x was not W -sneaky bad.
If THERE IS NO SUCH x then goto next slide (This will NOT be
a contradiction.)
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ALL x are Sneaky Bad

Assume that ALL x are (W ,X )-sneaky bad.
(∀x ∈ X )[W ∪ {x} is NOT nice].
WHY?

(∀x ∈ X )(∀∞y ∈ X )[y is naively bad ].

(∀x ∈ X )|∀∞y ∈ X )(∃a, b, a′ ∈ W )[COL(a, b, y) = COL(a′, x , y)]
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Infinite Sequence of x ’s

(∀x ∈ X )(∀∞y ∈ X )(∃a, b, a′ ∈ W )[COL(a, b, y) = COL(a′, x , y)]
ABBREVIATE by COL by C
x1, x2, x3, . . . are the elements of X in order.

(a1 < b1), a
′
1 ∈ W 3 s.t. (∃∞y ∈ X )[C (a1, b1, y) = C (a′1, x1, y)]

Y1 = {y | C (a1, b1, y) = C (a′1, x1, y)}
NOTE: (∀y ∈ Y1)[C (a1, b1, y) = C (a′1, x1, y)]

(a2 < b2), a
′
2 ∈ W 3 s.t. (∃∞y ∈ Y1)[C (a2, b2, y) = C (a′2, x2, y)]

Y2 = {y | C (a2, b2, y) = C (a′2, x2, y)}
NOTE: (∀y ∈ Y2)[C (a2, b2, y) = C (a′2, x2, y)]

(a3 < b3), a
′
3 ∈ W 3 s.t. (∃∞y ∈ Y2)[C (a3, b3, y) = C (a′3, x3, y)]

Y3 = {y | C (a3, b3, y) = C (a′3, x3, y)}
NOTE: (∀y ∈ Y3)[C (a3, b3, y) = C (a′3, x3, y)]
. . ..
NOTE Y1 ⊇ Y2 ⊇ Y3 · · · and all infinite.
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Infinite Sequence of x ’s

Look at ((a1 < b1), a
′
1), ((a2 < b2), a

′
2), . . ..

There exists i < j s.t. (ai < bi ), a
′
i , (aj < bj), a

′
j = (a, b, a′).

(∀y ∈ Yi )[COL(ai , bi , y) = COL(a′i , xi , y)]
(∀y ∈ Yj)[COL(aj , bj , y) = COL(a′j , xj , y)]

Since Yj ⊆ Yi and ai = aj = a, bi = bj = b, a′i = a′j = a′

(∀y ∈ Yj)[COL(a, b, y) = COL(a′, xi , y)]
(∀y ∈ Yj)[COL(a, b, y) = COL(a′, xj , y)]

So (∃c)[degc(a
′, y) ≥ 2].

CONTRADICTION!! Hence some x is not sneaky bad.
Note- proof is constructive— do the construction until get a repeat
and then you have your X ′ and any x left will work.
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UPSHOT

We have a proof of Inf Can 3-ary Ramsey that only uses:

I 1-ary can Ramsey

I 4-ary Ramsey.

Finite version yields the following:
Theorem: For all k there exists n such that for any
COL :

([n]
3

)
→ ω there exists I ⊆ {1, 2, 3}, and a set H of size k,

such that H is I -homog. There is a poly p such that n ≤ R4(p(k)).
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Goal

We want:
Theorem: If P is a countably infinite set of points in the plane, no
three collinear, then there exists a countably infinite subset such
that all of the areas defined by three points are DIFFERENT.
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NEW

Lemma: Let P = {p1, p2, . . .} be a countable set of points in R2,
no three collinear. Define COL :

(N
3

)
via

COL(i , j , k) = AREA(pi , pj , pk). For I ⊂ {1, 2, 3} COL has no
I -homog set of size 6.
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PROOF

Assume, BWOC, there exists an I -homog set of size 6. Can take
I -homog set {1, 2, 3, 4, 5, 6}.
Case 1: I = {1}, {1, 2}, or {2}.
AREA(p1, p2, p4) = AREA(p1, p2, p5). p4 and p5: (1) on a line
parallel to p1p2, or (2) on different sides of p1p2. In the later case
the midpoint of p4p5 is on p1p2.
AREA(p1, p3, p4) = AREA(p1, p3, p5). p4 and p5: (1) on a line
parallel to p1p3, or (2) are on different sides of p1p3. In the later
case the midpoint of p4p5 is on p1p3.
AREA(p2, p3, p4) = AREA(p2, p3, p5). p4 and p5: (1) on a line
parallel to p2p3, or (2) on different sides of p2p3. In the later case
the midpoint of p4p5 is on p2p3.
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PROOF

CASES:

I Two of these cases have p4, p5 on the same side of the line.
We can assume that p4, p5 are on a line parallel to both p1p2

and p1p3. Since p1, p2, p3 are not collinear there is no such
line.

I Two of these cases have p4, p5 on opposite sides of the line.
We can assume that the midpoint of p4p5 is on both p1p2 and
p1p3. Since p1, p2, p3 are not collinear the only point on both
p1p2 and p1p3 is p1. So the midpoint of p4, p5 is p1. Thus
p4, p1, p5 are collinear which is a contradiction.
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OTHER CASES

For I = {1}, {1, 2}, or {2} we used the line-point pairs

{p1p2, p1p3, p2p3} × {p4, p5}.

For the rest of the cases we just specify which line-point pairs to
use.
Case 2: I = {3} or {2, 3}. Use

{p4p5, p3p5, p3p4} × {p1, p2}.

Case 3: I = {1, 3} Use

{p1p4, p1p5, p1p6} × {p2, p3}.

This is the only case that needs 6 points.
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Theorem

Theorem: If P is a countably infinite set of points in the plane, no
three collinear, then there exists a countably infinite subset such
that all of the areas defined by three points are DIFFERENT.
Proof: Use Geom Lemma and 3-can Ramsey!
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What about 3-d?

For 3-d the Can Ramsey Theory is fine, but we need Geom Lemma.
KNOWN:
Lemma: Let C1,C2,C3 be three cylinders with no pair of parallel
axis. Then C1 ∩ C2 ∩ C3 consists of at most 8 points.
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Geom Lemma

Lemma: Let P = {p1, p2, . . .} be a countably infinite set of points
in R3, no three collinear. Color

(N
3

)
via

COL(i , j , k) = AREA(pi , pj , pk). This coloring has no homog set of
size 13.
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PROOF

Assume, BWOC, that there exists an I -homog set of size 13. We
take {1, . . . , 13}.
Case 1: I = {1}, {1, 2}, or {2}.
AREA(p1, p2, p4) = AREA(p1, p2, p5) = · · · = AREA(p1, p2, p12).
So p4, . . . , p12 are on a cylinder with axis p1p2.
AREA(p1, p3, p4) = AREA(p1, p3, p5) = · · · = AREA(p1, p3, p12).
So p4, . . . , p12 are on a cylinder with axis p1p3.
AREA(p2, p3, p4) = AREA(p2, p3, p5) = · · · = AREA(p2, p3, p12).
so p4, . . . , p12 are on a cylinder with axis p2p3.
p1, p2, p3 not collinear, so 3 cylinders have intersection ≤ 8.
However, we just showed 9. Contradiction.
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PROOF

For I = {1}, {1, 2}, or {2} we used the line-point pairs

{p1p2, p1p3, p2p3} × {p4, . . . , p12}.

For the rest of the cases we just specify which line-point pairs to
use.

Case 2: I = {3} or {2, 3}. Use

{p11p12, p10p12, p10p11} × {p1, . . . , p9}.

Case 3: I = {1, 3} Use

{p1p11, p1p12, p1p13} × {p2, . . . , p10}.

This is the only case that needs 13 points.
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Theorem

Theorem: If P is a countably infinite set of points in the R3, no
three collinear, then there exists a countably infinite subset such
that all of the areas defined by three points are DIFFERENT.
Proof: Use Geom Lemma and 3-can Ramsey!
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Generalize to d dimensions?

To get a similar theorem in Rd for d ≥ 3 need Geometric Lemmas.
OPEN!
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