The Infinite Can Ramsey Theorem (An Exposition)

William Gasarch-U of MD

William Gasarch-U of MD The Infinite Can Ramsey Theorem (An Exposition)

(人間) (人) (人) (人)

Theorem: For every $COL : \binom{N}{2} \rightarrow [c]$ there is an infinite homogenous set.

What if the number of colors was infinite?

Do not necc get a homog set since could color EVERY edge differently. But then get infinite *rainbow set*.

(4月) イヨト イヨト

Theorem: For every $COL : \binom{N}{2} \to \omega$ there is an infinite homogenous set OR an infinite rainbow set. VOTE:

・ロン ・聞と ・ほと ・ほと

Э

Theorem: For every $COL : \binom{N}{2} \rightarrow \omega$ there is an infinite homogenous set OR an infinite rainbow set. VOTE: FALSE:

- $\blacktriangleright COL(i,j) = \min\{i,j\}.$
- $COL(i,j) = \max\{i,j\}.$

Definition: Let $COL : \binom{N}{2} \to \omega$. Let $V \subseteq N$.

- V is homogenous if COL(a, b) = COL(c, d) iff TRUE.
- V is min-homogenous if COL(a, b) = COL(c, d) iff a = c.
- V is max-homogenous if COL(a, b) = COL(c, d) iff b = d.
- V is rainbow if COL(a, b) = COL(c, d) iff a = c and b = d.

Lemma: Let V be an countable set. Let $COL : V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainbow set (all diff colors).

Definition Let $COL : \binom{N}{2} \to \omega$. If *c* is a color and $v \in N$ then $\deg_c(v)$ is the number of *c*-colored edges with an endpoint in *v*.

(4月) イヨト イヨト

Lemma Let X be infinite. Let $COL : \binom{X}{2} \to \omega$. If for $x \in X$ and $c \in \omega$, $\deg_c(x) \le 1$ then there is an infinite rainbow set. PROVE IN GROUPS.

소리가 소문가 소문가 소문가

Let R be a MAXIMAL rainbow set of X.

 $(\forall y \in X - R)[X \cup \{y\} \text{ is not a rainbow set}].$

Let $y \in X - R$. Why is $y \notin R$?

- 1. There exists $u \in R$ and $\{a, b\} \in \binom{R}{2}$ such that COL(y, u) = COL(a, b).
- 2. There exists $\{a, b\} \in {\binom{R}{2}}$ such that COL(y, a) = COL(y, b). This cannot happen since then y has color degree ≤ 1 .

Map X - R to $R \times {\binom{R}{2}}$: map $y \in X - R$ to $(u, \{a, b\})$ (item 1). Map is injective: if y_1 and y_2 both map to $(u, \{a, b\})$ then $COL(y_1, u) = COL(y_2, u)$ but $\deg_c(u) \le 1$. Injection from X - R to $R \times {\binom{R}{2}}$. If R finite then injection from an infinite set to a finite set Impossible! Hence R is infinite.

イロト イポト イヨト イヨト 二日

Theorem: For all $COL : {N \choose 2} \rightarrow \omega$ there is either

- an infinite homogenous set,
- an infinite min-homog set,
- an infinite max-homog set, or
- ▶ an infinite rainbow set.

Given $COL : \binom{N}{2} \to \omega$. We use COL to obtain $COL' : \binom{N}{3} \to [4]$ We will use the 3-ary Ramsey theorem.

1. If $COL(x_1, x_2) = COL(x_1, x_3)$ then $COL'(x_1, x_2, x_3) = 1$.

2. If $COL(x_1, x_3) = COL(x_2, x_3)$ then $COL'(x_1, x_2, x_3) = 2$.

3. If $COL(x_1, x_2) = COL(x_2, x_3)$ then $COL'(x_1, x_2, x_3) = 3$.

4. If none of the above occur then $COL'(x_1, x_2, x_3) = 4$. PROVE THIS WORKS IN CLASS

Need Lemma:

Geom Lemma: Let P be a countable set of points in \mathbb{R}^2 Let $COL: \binom{P}{2} \to \mathbb{R}^+$ be defined by COL(x, y) = |x - y|. Then

1. There is no infinite homogenous set.

- 2. There is no infinite min-homogenous set.
- 3. There is no infinite max-homogenous set.

PROVE IN GROUPS

Theorem: Let P be a countable set of points in R^2 . There exists a countable subset X of P such that all pairs of points in X have different distances.

Proof: Let $COL: \binom{P}{2} \to \mathbb{R}^+$ be COL(x, y) = |x - y|.

Use Can Ramsey Theorem and Geom Lemma to obtain infinite rainbow set, hence our desired set.

・吊 ・ モン・ ・ モン

Theorem: For every $COL : \binom{N}{3} \rightarrow [c]$ there is an infinite homogenous set.

What if the number of colors was infinite?

Do not necc get a homog set since could color EVERY edge differently. But then get infinite *rainbow set*.

Discuss with Class what theorem might be.

Definition: Let $COL : {N \choose 3} \rightarrow \omega$. Let $I \subseteq \{1, 2, 3\}$. A set is *I*-homog if, for all $x_1 < x_2 < x_3$, $y_1 < y_2 < y_3$.

$$COL(x_1, x_2, x_3) = COL(y_1, y_2, y_3)$$
 iff $(\forall i \in I)[x_i = y_i]$.

Theorem: For all $COL : {N \choose 3} \to \omega$ there exists $I \subseteq [3]$ and infinite $H \subseteq \mathbb{N}$ such that H is *I*-homog.

Given $COL : \binom{N}{3} \to \omega$. We define $COL' : \binom{N}{4} \to [7]$ We use 4-ary Ramsey. $COL'(x_1, x_2, x_3, x_4)$: 1. $COL(x_1, x_2, x_3) = COL(x_1, x_2, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 1$. 2. $COL(x_1, x_2, x_3) = COL(x_1, x_3, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 2.$ 3. $COL(x_1, x_2, x_3) = COL(x_2, x_3, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 3.$ 4. $COL(x_1, x_2, x_4) = COL(x_1, x_3, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 4$. 5. $COL(x_1, x_2, x_4) = COL(x_2, x_3, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 5.$ 6. $COL(x_1, x_3, x_4) = COL(x_2, x_3, x_4) \rightarrow COL'(x_1, x_2, x_3, x_4) = 6.$ 7. If none of the above occur then $COL'(x_1, x_2, x_3, x_4) = 7$.

PROVE IN GROUPS: The first 6-cases yield *I*-homog sets. WHAT ABOUT THE 7th case?

イロト イポト イヨト イヨト

The only case left is when

•
$$COL(x_1, x_3, x_4) \neq COL(x_2, x_3, x_4)$$

Summarize this:

イロト イポト イヨト イヨト

Э

The only case left is when

Summarize this:

$$(\forall c)(\forall x, y)[\deg_c(x, y) \leq 1].$$

<ロ> (四) (四) (注) (注) (三) (三)

NEED the following **Statement:** Let X be infinite. Let $COL : {X \choose 3} \to \omega$. Assume that $(\forall c)(\forall x, y \in X)[\deg_c(x, y) \le 1]$. Then there is an infinite rainbow subset of X. **VOTE:** YES or NO or UNKNOWN TO SCIENCE.

NEED the following **Statement:** Let X be infinite. Let $COL : {X \choose 3} \rightarrow \omega$. Assume that $(\forall c)(\forall x, y \in X)[\deg_c(x, y) \le 1]$. Then there is an infinite rainbow subset of X. **VOTE:** YES or NO or UNKNOWN TO SCIENCE. YES- its true. TRY TO PROVE IT IN GROUPS.

Maximal argument does not work. BILL- DISCUSS ON BOARD.

Э

Ulrich's solution:

- Solve the problem
- ▶ Get Bill to bet \$5.00 you can't solve it.
- ▶ Show him solution and collect \$5.00.

(4月) イヨト イヨト

Ulrich's solution: Stop problem before it starts. $COL: \binom{X}{3} \rightarrow \omega.$ $(\forall c)(\forall x, y)[\deg_c(x, y) \le 1].$ DEFINE $COL'': \binom{X}{5} \rightarrow [4].$ $COL''(x_1 < x_2 < x_3 < x_4 < x_5) =$ $1 \text{ if } COL(x_1, x_2, x_5) = COL(x_3, x_4, x_5).$ $2 \text{ if } COL(x_1, x_3, x_5) = COL(x_2, x_4, x_5).$ $3 \text{ if } COL(x_1, x_4, x_5) = COL(x_2, x_3, x_5).$

4 otherwise.

SHOW IN GROUPS- Can't have inf homog set of color 1,2, or 3.

伺下 イヨト イヨト

Let Y be infinite homog set. RECAP:

- 1. $(\forall c)(\forall x, y \in Y)[\deg_c(x, y) \leq 1].$
- 2. $(\forall x_1 < x_2 < x_3 < x_4 < x_5)[COL(x_1, x_2, x_5) \neq COL(x_3, x_4, x_5)].$
- 3. $(\forall x_1 < x_2 < x_3 < x_4 < x_5)[COL(x_1, x_3, x_5) \neq COL(x_2, x_4, x_5)].$

4. $(\forall x_1 < x_2 < x_3 < x_4 < x_5)[COL(x_1, x_4, x_5) \neq COL(x_2, x_3, x_5)].$ PROVE IN GROUPS: There is an infinite Rainbow set. Proof is DONE. PROS and CONS.

- PRO- proof is CLEAN- only ((4 choose 3) choose 2)+1 = 7 cases.
- 2. PRO- Can do 4-ary- only ((5 choose 4) choose 2)+1 = 11 cases.
- 3. PRO- Can do a-ary Can Ramsey- notation can manage the cases.
- 4. CON- If finitize this proof you have to use
 - 2-ary Can Ramsey
 - 4-ary hypergraph Ramsey
 - 5-ary hypergraph Ramsey

- 4 回 と 4 き と 4 き と

For finite version:

- ▶ 2-ary Can Ramsey- We will deal with this FIRST.
- ► 4-ary hypergraph Ramsey- Stuck with that.
- 5-ary hypergraph Ramsey- TWO ways to deal with this!

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

WE WILL GET RID OF USE OF 2-ARY CAN RAMSEY

イロト イヨト イヨト

NEW Proof of 3-ary Ramsey Can Theorem

Given $COL: \binom{N}{2} \to \omega$. We define $COL': \binom{N}{4} \to [8]$. We use 4-ary Ramsey. $COL'(x_1, x_2, x_3, x_4)$: Abbreviate $COL(x_1, x_2, x_3) = COL(x_1, x_3, x_4)$ by 123=124. Abbreviate NOTHING ELSE EQUAL by NEE 1. $123 = 134 \rightarrow COL'(x_1, x_2, x_3, x_4) = 1$. 2. $124 = 234 \rightarrow COL'(x_1, x_2, x_3, x_4) = 2$. 3. $123 = 234 \rightarrow COL'(x_1, x_2, x_3, x_4) = 3.$ 4. 123 = 124, NEE $\rightarrow COL'(x_1, x_2, x_3, x_4) = 4$. 5. 134 = 234, NEE $\rightarrow COL'(x_1, x_2, x_3, x_4) = 5$. 6. 134 = 124, NEE $\rightarrow COL'(x_1, x_2, x_3, x_4) = 6$. 7. 123 = 124, 134 = 234, $124 \neq 134 \rightarrow COL'(x_1, x_2, x_3, x_4) = 7$. PROVE IN GROUPS, IF GET DONE THEN LOOK AT

REMAINING CASES.

- 4 回 ト 4 ヨ ト 4 ヨ ト

What is true of cases that are left?

1. $COL(x_1, x_2, x_3) \neq COL(x_1, x_3, x_4)$ (Shorthand: $123 \neq 134$).

2. $COL(x_1, x_2, x_4) \neq COL(x_2, x_3, x_4)$ (Shorthand: $124 \neq 234$).

3. $COL(x_1, x_2, x_3) \neq COL(x_2, x_3, x_4)$ (Shorthand: $123 \neq 234$).

Need to look at ALL combinations of (123, 124), (124, 134), (134, 234).

- 4 同 ト 4 ヨ ト 4 ヨ ト

123 = ?124	124 = ?134	134 = ?234	Comment
Y	Y	Y	
Y	Y	N	
Y	N	Y	
Y	N	N	
N	Y	Y	
N	Y	N	
N	N	Y	
N	N	N	

PROVE IN GROUPS.

<ロ> (四) (四) (注) (注) (注) (注)

123 =? 124	124 =? 134	134 =? 234	Comment
Y	Y	Y	123=134
Y	Y	N	123=134
Y	N	Y	COVERED exactly
Y	N	N	An NEE case
N	Y	Y	124=234
N	Y	N	An NEE case
N	N	Y	An NEE case
N	N	N	Color 8–Rainbow

So we are DONE! Got rid of 2-ary Can Ramsey Use!

イロト イポト イヨト イヨト

æ

WE WILL GET RID OF USE OF 5-ARY RAMSEY

イロト イポト イヨト イヨト

æ

- 1. We have an infinite set with $\deg_c(x, y) \leq 1$.
- 2. Want an infinite Rainbow set.
- 3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:

イロト イポト イヨト イヨト

- 1. We have an infinite set with $\deg_c(x, y) \leq 1$.
- 2. Want an infinite Rainbow set.
- 3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:
 - Finite version would have enormous bounds.

イロト イポト イヨト イヨト

- 1. We have an infinite set with $\deg_c(x, y) \leq 1$.
- 2. Want an infinite Rainbow set.
- 3. CAN obtain using Ulrich Technique of using 5-ary Hypergraph Ramsey. Elegant! Pedagogically great! But two drawbacks:
 - Finite version would have enormous bounds.
 - Costs me \$5.00 everytime I use it. (Douglas has great copyright lawyer.)

イロト イポト イヨト イヨト

Given $COL: \binom{N}{3} \to \omega$ with $(\forall c)(\forall x, y)[\deg_c(x, y) \le 1]$ Show there exists an infinite rainbow set.

<ロ> (四) (四) (三) (三)

PLAN: build the set W. Have finite $W_{\rm s}.$ Want to add to it. WHAT IF

 $(\forall x \notin W_s)(\exists a_1, b_1, a_2, b_2 \in W_s)[COL(a_1, b_a, x) = COL(a_2, b_2, x)]$

Then can't add anything to W_s .

- 4 同 ト 4 ヨ ト 4 ヨ ト

3

Definition: *W* finite, *X* infinite, W < X. Let $COL : \binom{W \cup X}{3} \rightarrow \omega$. $x \in X$.

1. x is W-naively bad if

 $(\exists a_1, b_1, a_2, b_2 \in W)[COL(a_1, b_1, x) = COL(a_2, b_2, x)].$

2. x is (W, X)-sneaky bad if

 $(\forall^{\infty} y \in X)[y \text{ is } (W \cup \{x\})\text{-naively bad}].$

イロト イポト イラト イラト 一日

Definition: *W* finite, *X* infinite, W < X. Let $COL : \binom{W \cup X}{3} \rightarrow \omega$. $x \in X$. *W* is *X*-nice if

- 1. W is rainbow, and
- 2. $(\forall x \in X)[x \text{ is not naively bad }].$

KEY: While construction W we want to make sure that each W_s is nice.

Lemma: Let $W, X \subseteq \mathbb{N}$. Let $COL : \binom{W \cup X}{3} \to \omega$ be such that

- ► $\forall x, y \in W \cup X$) $(\forall c)[\deg_c(x, y) \leq 1].$
- W < X (so W is finite). Assume W is X-nice.

Then there exists $x \in X$ and infinite $X' \subseteq X$ such that $W \cup \{x\}$ is X'-nice.

TRY TO PROVE IN GROUPS.

(4月) イヨト イヨト

Proof: Inductively no $x \in X$ is naively bad.

Remove the finite number of $x \in X$ s.t. $(\exists a_1, b_1, c_1, a_2, b_2 \in W)[COL(a_1, b_1, c_1) = COL(a_2, b_2, x)]$

Rename set X. Have $(\forall x \in X)[W \cup \{x\} \text{ is rainbow}].$

GOOD NEWS- adding any x keeps rainbow. CALLENGE: We need an x that is not sneaky bad.

< (17) >

If THERE IS an x NOT sneaky bad then great: W gets $W \cup \{x\}$. $X = \{y \in X \mid y \text{ is not } (W \cup \{x\})\text{-naively bad}\}.$ X is infinite since x was not W-sneaky bad. If THERE IS NO SUCH x then goto next slide (This will NOT be a contradiction.) Assume that ALL x are (W, X)-sneaky bad. $(\forall x \in X)[W \cup \{x\} \text{ is NOT nice}].$ WHY?

 $(\forall x \in X)(\forall^{\infty}y \in X)[y \text{ is naively bad }].$

 $(\forall x \in X) | \forall^{\infty} y \in X) (\exists a, b, a' \in W) [COL(a, b, y) = COL(a', x, y)]$

イロト イポト イラト イラト 一日

Infinite Sequence of x's

 $(\forall x \in X)(\forall^{\infty}y \in X)(\exists a, b, a' \in W)[COL(a, b, y) = COL(a', x, y)]$ ABBREVIATE by COL by C

 x_1, x_2, x_3, \ldots are the elements of X in order.

 $\begin{array}{l} (a_1 < b_1), a_1' \in W^3 \text{ s.t. } (\exists^{\infty} y \in X) [C(a_1, b_1, y) = C(a_1', x_1, y)] \\ Y_1 = \{y \mid C(a_1, b_1, y) = C(a_1', x_1, y)\} \\ \text{NOTE: } (\forall y \in Y_1) [C(a_1, b_1, y) = C(a_1', x_1, y)] \end{array}$

$$(a_2 < b_2), a'_2 \in W^3 \text{ s.t. } (\exists^{\infty} y \in Y_1)[C(a_2, b_2, y) = C(a'_2, x_2, y)]$$

 $Y_2 = \{y \mid C(a_2, b_2, y) = C(a'_2, x_2, y)\}$
NOTE: $(\forall y \in Y_2)[C(a_2, b_2, y) = C(a'_2, x_2, y)]$

$$(a_3 < b_3), a'_3 \in W^3 \text{ s.t. } (\exists^{\infty} y \in Y_2)[C(a_3, b_3, y) = C(a'_3, x_3, y)]$$

 $Y_3 = \{y \mid C(a_3, b_3, y) = C(a'_3, x_3, y)\}$
NOTE: $(\forall y \in Y_3)[C(a_3, b_3, y) = C(a'_3, x_3, y)]$

. . ..

NOTE $Y_1 \supseteq Y_2 \supseteq Y_3 \cdots$ and all infinite.

3

Infinite Sequence of x's

Look at
$$((a_1 < b_1), a_1')$$
, $((a_2 < b_2), a_2')$,

There exists
$$i < j$$
 s.t. $(a_i < b_i), a'_i, (a_j < b_j), a'_j = (a, b, a').$
 $(\forall y \in Y_i)[COL(a_i, b_i, y) = COL(a'_i, x_i, y)]$
 $(\forall y \in Y_j)[COL(a_j, b_j, y) = COL(a'_j, x_j, y)]$

Since
$$Y_j \subseteq Y_i$$
 and $a_i = a_j = a$, $b_i = b_j = b$, $a'_i = a'_j = a'$

$$(\forall y \in Y_j)[COL(a, b, y) = COL(a', x_i, y)]$$

 $(\forall y \in Y_j)[COL(a, b, y) = COL(a', x_j, y)]$

So $(\exists c)[\deg_c(a', y) \ge 2]$. CONTRADICTION!! Hence some x is not sneaky bad. Note- proof is constructive— do the construction until get a repeat and then you have your X' and any x left will work.

(4月) イヨト イヨト

We have a proof of Inf Can 3-ary Ramsey that only uses:

- 1-ary can Ramsey
- 4-ary Ramsey.

Finite version yields the following:

Theorem: For all k there exists n such that for any $COL: \binom{[n]}{3} \to \omega$ there exists $I \subseteq \{1, 2, 3\}$, and a set H of size k, such that H is I-homog. There is a poly p such that $n \leq R_4(p(k))$.

We want:

Theorem: If *P* is a countably infinite set of points in the plane, no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT.

・ 同下 ・ ヨト ・ ヨト

Lemma: Let $P = \{p_1, p_2, ...\}$ be a countable set of points in \mathbb{R}^2 , no three collinear. Define $COL : \binom{N}{3}$ via $COL(i, j, k) = AREA(p_i, p_j, p_k)$. For $I \subset \{1, 2, 3\}$ COL has no *I*-homog set of size 6.

・ 同下 ・ ヨト ・ ヨト

Assume, BWOC, there exists an *I*-homog set of size 6. Can take *I*-homog set $\{1, 2, 3, 4, 5, 6\}$. **Case 1:** $I = \{1\}, \{1, 2\}, \text{ or } \{2\}.$ $AREA(p_1, p_2, p_4) = AREA(p_1, p_2, p_5)$. p_4 and p_5 : (1) on a line parallel to p_1p_2 , or (2) on different sides of p_1p_2 . In the later case the midpoint of $p_4 p_5$ is on $p_1 p_2$. $AREA(p_1, p_3, p_4) = AREA(p_1, p_3, p_5)$. p_4 and p_5 : (1) on a line parallel to $p_1 p_3$, or (2) are on different sides of $p_1 p_3$. In the later case the midpoint of p_4p_5 is on p_1p_3 . $AREA(p_2, p_3, p_4) = AREA(p_2, p_3, p_5)$. p_4 and p_5 : (1) on a line parallel to $p_2 p_3$, or (2) on different sides of $p_2 p_3$. In the later case the midpoint of p_4p_5 is on p_2p_3 .

イロト イポト イヨト イヨト

CASES:

- ► Two of these cases have p₄, p₅ on the same side of the line. We can assume that p₄, p₅ are on a line parallel to both p₁p₂ and p₁p₃. Since p₁, p₂, p₃ are not collinear there is no such line.
- ► Two of these cases have p₄, p₅ on opposite sides of the line. We can assume that the midpoint of p₄p₅ is on both p₁p₂ and p₁p₃. Since p₁, p₂, p₃ are not collinear the only point on both p₁p₂ and p₁p₃ is p₁. So the midpoint of p₄, p₅ is p₁. Thus p₄, p₁, p₅ are collinear which is a contradiction.

소리가 소문가 소문가 소문가

For $I = \{1\}$, $\{1, 2\}$, or $\{2\}$ we used the line-point pairs $\{p_1p_2, p_1p_3, p_2p_3\} \times \{p_4, p_5\}.$

For the rest of the cases we just specify which line-point pairs to use.

Case 2: $I = \{3\}$ or $\{2, 3\}$. Use

$$\{p_4p_5, p_3p_5, p_3p_4\} \times \{p_1, p_2\}.$$

Case 3: $I = \{1, 3\}$ Use

 $\{p_1p_4, p_1p_5, p_1p_6\} \times \{p_2, p_3\}.$

This is the only case that needs 6 points.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem: If *P* is a countably infinite set of points in the plane, no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT. **Proof:** Use Geom Lemma and 3-can Ramsey!

For 3-d the Can Ramsey Theory is fine, but we need Geom Lemma. KNOWN:

Lemma: Let C_1 , C_2 , C_3 be three cylinders with no pair of parallel axis. Then $C_1 \cap C_2 \cap C_3$ consists of at most 8 points.

Lemma: Let $P = \{p_1, p_2, ...\}$ be a countably infinite set of points in R³, no three collinear. Color $\binom{N}{3}$ via $COL(i, j, k) = AREA(p_i, p_j, p_k)$. This coloring has no homog set of size 13.

Assume, BWOC, that there exists an *I*-homog set of size 13. We take {1,...,13}. **Case 1:** $I = \{1\}, \{1, 2\}, \text{ or } \{2\}.$ $AREA(p_1, p_2, p_4) = AREA(p_1, p_2, p_5) = \cdots = AREA(p_1, p_2, p_{12}).$ So p_4, \ldots, p_{12} are on a cylinder with axis p_1p_2 . $AREA(p_1, p_3, p_4) = AREA(p_1, p_3, p_5) = \cdots = AREA(p_1, p_3, p_{12}).$ So p_4, \ldots, p_{12} are on a cylinder with axis $p_1 p_3$. $AREA(p_2, p_3, p_4) = AREA(p_2, p_3, p_5) = \cdots = AREA(p_2, p_3, p_{12}).$ so p_4, \ldots, p_{12} are on a cylinder with axis $p_2 p_3$. p_1, p_2, p_3 not collinear, so 3 cylinders have intersection ≤ 8 . However, we just showed 9. Contradiction.

- 4 回 ト 4 ヨ ト 4 ヨ ト

PROOF

For $I = \{1\}$, $\{1,2\}$, or $\{2\}$ we used the line-point pairs

$$\{p_1p_2, p_1p_3, p_2p_3\} \times \{p_4, \ldots, p_{12}\}.$$

For the rest of the cases we just specify which line-point pairs to use.

Case 2: $I = \{3\}$ or $\{2,3\}$. Use $\{p_{11}p_{12}, p_{10}p_{12}, p_{10}p_{11}\} \times \{p_1, \dots, p_9\}$. Case 3: $I = \{1,3\}$ Use $\{p_1p_{11}, p_1p_{12}, p_1p_{13}\} \times \{p_2, \dots, p_{10}\}$.

This is the only case that needs 13 points.

イロト イポト イヨト イヨト

Theorem: If P is a countably infinite set of points in the \mathbb{R}^3 , no three collinear, then there exists a countably infinite subset such that all of the areas defined by three points are DIFFERENT. **Proof:** Use Geom Lemma and 3-can Ramsey!

・ 同下 ・ ヨト ・ ヨト

To get a similar theorem in \mathbb{R}^d for $d \ge 3$ need Geometric Lemmas. OPEN!

3