Ramsey's Theorem and the Canonical Ramsey's Theorem for the Infinite Complete Graph and the Infinite Complete Hypergraph Exposition by William Gasarch

1 Introduction

Notation 1.1 K_N is the graph (V, E) where

$$V = \mathsf{N} \\ E = \binom{\mathsf{N}}{2}$$

Notation 1.2 K_{N}^{a} is the hypergraph (V, E) where

$$V = \mathsf{N} \\ E = \binom{\mathsf{N}}{a}$$

Convention 1.3 In this paper (1) a coloring of a graph is a coloring of the edges of the graph. and (2) a coloring of a hypergraph is a coloring of the edges of the hypergraph.

Def 1.4 Let $c \in \mathbb{N}$. Let COL be a *c*-coloring of the edges of $K_{\mathbb{N}}$. Let $V' \subseteq V$. The set V' is *homogenous* if there exists a color c such that EVERY edge between vertices in V' is colored c.

Def 1.5 Let $c \in \mathbb{N}$. Let COL be a *c*-coloring of the edges of $K_{\mathbb{N}}^{a}$. Let $V' \subseteq V$. The set V' is *homogenous* if there exists a color *c* such that EVERY edge that uses only vertices of V' is colored *c*.

2 Ramsey's Theorem for the Infinite Complete Graphs

The following is Ramsey's Theorem for K_N .

Theorem 2.1 For every 2-coloring of the edges of K_N there is an infinite homogenous set.

Proof:

Let COL be a 2-coloring of K_N . We define an infinite sequence of vertices,

 $x_1, x_2, \ldots,$

and an infinite sequence of sets of vertices,

 $V_0, V_1, V_2, \ldots,$

that are based on COL.

Here is the intuition: Vertex $x_1 = 1$ has an infinite number of edges coming out of it. Some are RED, and some are BLUE. Hence there are an infinite number of RED edges coming out of x_1 , or there are an infinite number of BLUE edges coming out of x_1 (or both). Let c_1 be a color such that x_1 has an infinite number of edges coming out of it that are colored c_1 . Let V_1 be the set of vertices v such that $COL(v, x_1) = c_1$. Then keep iterating this process.

We now describe it formally.

$$\begin{array}{lll} V_0 = & \mathsf{N} \\ x_1 = & 1 \end{array}$$

$$c_1 = & \operatorname{RED} & \operatorname{if} |\{v \in V_0 \mid COL(v, x_1) = \operatorname{RED}\}| \text{ is infinite} \\ = & \operatorname{BLUE} & \operatorname{otherwise} \\ V_1 = & \{v \in V_0 \mid COL(v, x_1) = c_1\} \text{ (note that } |V_1| \text{ is infinite}) \end{array}$$

Let $i \geq 2$, and assume that V_{i-1} is defined. We define x_i , c_i , and V_i :

 $x_i =$ the least number in V_{i-1}

$$c_{i} = \operatorname{RED} \text{ if } |\{v \in V_{i-1} \mid COL(v, x_{i}) = \operatorname{RED}\}| \text{ is infinite} \\ = \operatorname{BLUE} \text{ otherwise} \\ V_{i} = \{v \in V_{i-1} \mid COL(v, x_{i}) = c_{i}\} \text{ (note that } |V_{i}| \text{ is infinite})$$

How long can this sequence go on for? Well, x_i can be defined if V_{i-1} is nonempty. We an show by induction that, for every i, V_i is infinite. Hence the sequence

$$x_1, x_2, \ldots,$$

is infinite.

Consider the infinite sequence

 c_1, c_2, \ldots

Each of the colors in this sequence is either RED or BLUE. Hence there must be an infinite sequence i_1, i_2, \ldots such that $i_1 < i_2 < \cdots$ and

 $c_{i_1} = c_{i_2} = \cdots$

Denote this color by c, and consider the vertices

$$H = \{x_{i_1}, x_{i_2}, \cdots\}$$

We leave it to the reader to show that H is homogenous.

Exercise 1 Show that, for all $c \geq 3$, for every *c*-coloring of the edges of K_N , thre is a an infinite homogenous set.