# Ramsey's Theorem and the Canonical Ramsey's Theorem for the Infinite Complete Graph and the Infinite Compleete Hypergraph <br> Exposition by William Gasarch 

## 1 Introduction

Notation 1.1 $K_{\mathrm{N}}$ is the graph $(V, E)$ where

$$
\begin{aligned}
& V=\mathrm{N} \\
& E=\binom{\mathrm{N}}{2}
\end{aligned}
$$

Notation $1.2 K_{\mathrm{N}}^{a}$ is the hypergraph $(V, E)$ where

$$
\begin{aligned}
& V=\mathrm{N} \\
& E=\binom{\mathrm{N}}{a}
\end{aligned}
$$

Convention 1.3 In this paper (1) a coloring of a graph is a coloring of the edges of the graph. and (2) a coloring of a hypergraph is a coloring of the edges of the hypergraph.

Def 1.4 Let $c \in \mathrm{~N}$. Let $C O L$ be a $c$-coloring of the edges of $K_{\mathrm{N}}$. Let $V^{\prime} \subseteq V$. The set $V^{\prime}$ is homogenous if there exists a color $c$ such that EVERY edge between vertices in $V^{\prime}$ is colored $c$.

Def 1.5 Let $c \in \mathrm{~N}$. Let $C O L$ be a $c$-coloring of the edges of $K_{\mathrm{N}}^{a}$. Let $V^{\prime} \subseteq V$. The set $V^{\prime}$ is homogenous if there exists a color $c$ such that EVERY edge that uses only vertices of $V^{\prime}$ is colored $c$.

## 2 Ramsey's Theorem for the Infinite Complete Graphs

The following is Ramsey's Theorem for $K_{N}$.
Theorem 2.1 For every 2-coloring of the edges of $K_{N}$ there is an infinite homogenous set.

## Proof:

Let $C O L$ be a 2-coloring of $K_{\mathrm{N}}$. We define an infinite sequence of vertices,

$$
x_{1}, x_{2}, \ldots,
$$

and an infinite sequence of sets of vertices,

$$
V_{0}, V_{1}, V_{2}, \ldots,
$$

that are based on $C O L$.
Here is the intuition: Vertex $x_{1}=1$ has an infinite number of edges coming out of it. Some are RED, and some are BLUE. Hence there are an infinite number of RED edges coming out of $x_{1}$, or there are an infinite number of BLUE edges coming out of $x_{1}$ (or both). Let $c_{1}$ be a color such that $x_{1}$ has an infinite number of edges coming out of it that are colored $c_{1}$. Let $V_{1}$ be the set of vertices $v$ such that $\operatorname{COL}\left(v, x_{1}\right)=c_{1}$. Then keep iterating this process.

We now describe it formally.

$$
\begin{aligned}
V_{0} & =\mathrm{N} \\
x_{1} & =1 \\
c_{1} & =\mathrm{RED} \text { if }\left|\left\{v \in V_{0} \mid \operatorname{COL}\left(v, x_{1}\right)=\mathrm{RED}\right\}\right| \text { is infinite } \\
& =\mathrm{BLUE} \text { otherwise } \\
V_{1} & =\left\{v \in V_{0} \mid \operatorname{COL}\left(v, x_{1}\right)=c_{1}\right\} \text { (note that }\left|V_{1}\right| \text { is infinite) }
\end{aligned}
$$

Let $i \geq 2$, and assume that $V_{i-1}$ is defined. We define $x_{i}, c_{i}$, and $V_{i}$ :

$$
\begin{aligned}
x_{i} & =\text { the least number in } V_{i-1} \\
c_{i} & =\mathrm{RED} \text { if }\left|\left\{v \in V_{i-1} \mid \operatorname{COL}\left(v, x_{i}\right)=\mathrm{RED}\right\}\right| \text { is infinite } \\
& =\operatorname{BLUE} \text { otherwise } \\
V_{i} & =\left\{v \in V_{i-1} \mid \operatorname{COL}\left(v, x_{i}\right)=c_{i}\right\} \text { (note that }\left|V_{i}\right| \text { is infinite) }
\end{aligned}
$$

How long can this sequence go on for? Well, $x_{i}$ can be defined if $V_{i-1}$ is nonempty. We an show by induction that, for every $i, V_{i}$ is infinite. Hence the sequence

$$
x_{1}, x_{2}, \ldots,
$$

is infinite.
Consider the infinite sequence

$$
c_{1}, c_{2}, \ldots
$$

Each of the colors in this sequence is either RED or BLUE. Hence there must be an infinite sequence $i_{1}, i_{2}, \ldots$ such that $i_{1}<i_{2}<\cdots$ and

$$
c_{i_{1}}=c_{i_{2}}=\cdots
$$

Denote this color by $c$, and consider the vertices

$$
H=\left\{x_{i_{1}}, x_{i_{2}}, \cdots\right\}
$$

We leave it to the reader to show that $H$ is homogenous.

Exercise 1 Show that, for all $c \geq 3$, for every $c$-coloring of the edges of $K_{\mathrm{N}}$, thre is a an infinite homogenous set.

