POLY VDW THEOREM (Exposition)

William Gasarch-U of MD

VDW

Recall:
Theorem: $(\forall k, c)(\exists W=W(k, c))$ such that for all COL : $[W] \rightarrow[c](\exists a, d)$ such that
$\operatorname{COL}(a)=\operatorname{COL}(a+d)=\operatorname{COL}(a+2 d)=\cdots=\operatorname{COL}(a+(k-1) d)$.

Recall:
$W(1, c)=1$
$W(2, c)=c+1$ (this is PHP)
$W(k, 1)=k$
Let $W(k, c)$ mean both the number and the STATEMENT.

We proved

Recall:

$W(2,32) \Longrightarrow W(3,2)$
$W\left(2,10^{10}\right) \Longrightarrow W(3,3)$ (might not be big enough.)
$W\left(2,\left(10!^{10!}\right)\right) \Longrightarrow W(3,4)$ (might not be big enough.)
$W(3, B L A H) \Longrightarrow W(4,2)$.
$W(3, B L A H B L A H) \Longrightarrow W(4,3)$.

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$
\begin{gathered}
(2,2) \leq(2,3) \leq(2,4) \leq \cdots \leq(3,2) \leq(3,3) \leq(3,4) \cdots \\
(4,2) \leq(4,3) \leq \cdots(5,2) \leq(5,3) \leq \cdots \leq(6,2) \cdots
\end{gathered}
$$

Formal proof of VDW is an induction on this ordering.
Induction on an ω^{2} ordering.

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$
\begin{gathered}
(2,2) \leq(2,3) \leq(2,4) \leq \cdots \leq(3,2) \leq(3,3) \leq(3,4) \cdots \\
(4,2) \leq(4,3) \leq \cdots(5,2) \leq(5,3) \leq \cdots \leq(6,2) \cdots
\end{gathered}
$$

Formal proof of VDW is an induction on this ordering.
Induction on an ω^{2} ordering.
(WARNING: Not a good example of induction for CMSC 250)

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$
\begin{gathered}
(2,2) \leq(2,3) \leq(2,4) \leq \cdots \leq(3,2) \leq(3,3) \leq(3,4) \cdots \\
(4,2) \leq(4,3) \leq \cdots(5,2) \leq(5,3) \leq \cdots \leq(6,2) \cdots
\end{gathered}
$$

Formal proof of VDW is an induction on this ordering.
Induction on an ω^{2} ordering.
(WARNING: Not a good example of induction for CMSC 250)
(WEIRDNESS: Several HS students saw this as their FIRST proof by induction and went on to live productive lives.)

Poly VDW Theorem

Why $a, a+d, a+2 d, a+3 d, \ldots, a+(k-1) d ?$
Replace $d, 2 d, 3 d, \ldots,(k-1) d$ by some other funcof d ?
Is this true:
Theorem: $\left(\forall p_{1}, \ldots, p_{k} \in \mathrm{Z}[x]\right)(\forall c)(\exists W)$ for all $C O L:[W] \rightarrow[c]$ ($\exists a, d$)
$\operatorname{COL}(a)=\operatorname{COL}\left(a+p_{1}(d)\right)=\operatorname{COL}\left(a+p_{2}(d)\right)=\cdots=\operatorname{COL}\left(a+p_{k}(d)\right)$.
VOTE!

THE REAL KEY DIFFERENCE

FALSE for a DUMB reason:

1. $k=1$
2. $p_{1}(x)=1$
3. $c=2$.

NEED W such that for all COL : $[W] \rightarrow[2]$ there exists a, d such that

$$
\operatorname{COL}(a)=\operatorname{COL}(a+1)
$$

Take $R B R B R B \cdots$.

Poly VDW Theorem

Definition: $Z^{*}[x]$ are all polys with coeff in Z and zero constant term.
Theorem: $\left(\forall p_{1}, \ldots, p_{k} \in Z^{*}[x]\right)(\forall c)(\exists W)$ for all COL: $[W] \rightarrow[c](\exists a, d)$
$\operatorname{COL}(a)=\operatorname{COL}\left(a+p_{1}(d)\right)=\operatorname{COL}\left(a+p_{2}(d)\right)=\cdots=\operatorname{COL}\left(a+p_{k}(d)\right)$.

POLY VDW Theorem

RESTATE IT:

Theorem: For all finite $S \subseteq Z^{*}[x](\forall c)(\exists W)$ for all
COL : $[W] \rightarrow[c](\exists a, d)$

$$
\{a\} \cup\{a+p(d) \mid p \in S\} \text { all the same color. }
$$

Notation: $\operatorname{PVDW}(S)$ means that Poly VDW theorem holds for the set $S \subseteq \mathrm{Z}^{*}[x]$. Note that

$$
\operatorname{PVDW}(x, 2 x, 3 x) \Longrightarrow(\forall c)[\operatorname{VDW}(3, c)] .
$$

Notation for Induction

Definition: A finite set $S \subseteq \mathrm{Z}^{*}[x]$ is of type $\left(n_{e}, n_{e-1}, \ldots, n_{1}\right)$ if

- the number of diff lead coef of polys of degree e is $\leq n_{e}$.
- the number of diff lead coef of polys of degree $e-1$ is $\leq n_{e-1}$.
- the number of diff lead coef of polys of degree 1 is $\leq n_{1}$. BILL DO EXAMPLES ON BOARD.

Better Notation

Definition: Let $\left(n_{e}, n_{e-1}, \ldots, n_{1}\right) \in \mathrm{N}^{e} . \operatorname{PVDW}\left(n_{e}, \ldots, n_{1}\right)$ means that $\operatorname{PVDW}(S)$ holds for all S of type $\left(n_{e}, n_{e-1}, \ldots, n_{1}\right)$.

VDW's theorem is $P V D W(1) \wedge P V D W(2) \wedge \cdots$.
We showed

$$
\left(\bigwedge_{i \in N} P V D W(i)\right) \Longrightarrow P V D W(1,0)
$$

Even Better Notation

Definition: Let $\left(n_{e}, n_{e-1}, \ldots, n_{1}\right) \in(\omega \cup N)^{e} . \operatorname{PVDW}\left(n_{e}, \ldots, n_{1}\right)$ means that, for all $\left(m_{e}, \ldots, m_{1}\right) \leq\left(n_{e}, \ldots, n_{1}\right)$ (component wise) $\operatorname{PVDW}(S)$ holds for all S of type $\left(m_{e}, m_{e-1}, \ldots, m_{1}\right)$.

We showed

$$
\operatorname{PVDW}(\omega) \Longrightarrow P V D W(1,0)
$$

Poly SQ VDW

Theorem: $(\forall c)(\exists W)$ for all $C O L:[W] \rightarrow[c](\exists a, d)$

$$
\operatorname{COL}(a)=\operatorname{COL}\left(a+d^{2}\right)
$$

Proof by proving Lemma:
Lemma: $(\forall c)(\forall r)(\exists U)$ for all $C O L:[U] \rightarrow[c]$ EITHER

- $(\exists a, d)\left[\operatorname{COL}(a)=\operatorname{COL}\left(a+d^{2}\right)\right]$, OR
- $\left(\exists a, d_{1}, d_{2}, \ldots, d_{r}\right)\left[\operatorname{COL}(a), \operatorname{COL}\left(a+d_{i}^{2}\right)\right]$ all colored DIFFERENTLY.
BILL- REDO OR NOT IN CLASS.

PVDW(1,0)

Theorem: $(\forall c)(\forall k)(\forall A \in \mathrm{Z})(\forall B \subseteq \mathrm{Z}, \quad B$ finite $)(\exists W)$ for all COL : $[W] \rightarrow[c](\exists a, d)$
all elemenents of $\{a\} \cup\left\{a+d^{2}+i d: i \in B\right\}$ are the same color.
Proof by proving Lemma:
Lemma: $(\forall c)(\forall k)(\forall A \in Z)(\forall B \subseteq Z, B$ finite $)(\exists U)$ for all COL : [U] \rightarrow [c] EITHER

- $(\exists a, d)$ all elemenents of $\{a\} \cup\left\{a+d^{2}+i d: i \in B\right\}$ are the same color, OR
- $\left(\exists a, d_{1}, d_{2}, \ldots, d_{r}\right)$
- $\left(\forall 1 \leq j \leq r\right.$ the elements of $\left\{a+d_{j}^{2}+i d_{j}: i \in B\right\}$ are the same color. We call the j th one the j th BUBBLE.
- All the bubbles are colored differently and all are a different color than a.

BILL- DO IN CLASS AND DO BASE CASE

$\operatorname{PVDW}\left(x^{2}, x\right)$

Theorem: $(\forall c))(\exists W)$ for all $C O L:[W] \rightarrow[c](\exists a, d)$ all elemenents of $\{a\} \cup\left\{a+d, a+d^{2}\right\}$ are the same color. Proof by proving Lemma:
Lemma: $(\forall c)(\exists U)$ for all COL : $[U] \rightarrow[c]$ EITHER

- $(\exists a, d)$ all elemenents of $\{a\} \cup\left\{a+d, a+d^{2}\right\}$ are the same color, OR
- $\left(\exists a, d_{1}, d_{2}, \ldots, d_{r}\right)$
- $\left(\forall 1 \leq j \leq r\right.$ the elements of $\left\{a+d_{j}, a+d_{j}^{2}\right\}$ are the same color. We call the j th one the j th BUBBLE.
- All the bubbles are colored differently and all are a different color than a.

BILL- DO IN CLASS AND DO BASE CASE

