Subsequence Languages: An Exposition

William Gasarch-U of MD

William Gasarch-U of MD Subsequence Languages: An Exposition

向下 イヨト イヨト

Defintion: Let Σ be a finite alphabet.

1. Let $w \in \Sigma^*$. SUBSEQ(w) is the set of all strings you get by replacing some of the symbols in w with the empty string.

2. Let
$$L \subseteq \Sigma^*$$
. $SUBSEQ(L) = \bigcup_{w \in L} SUBSEQ(w)$.

End of Definition

Example: *abaab* has the following subsequences: *a*, *b*, *aa*, *ab*, *ba*, *bb*, *aaa*, *aab*, *abaa*, *abb*, *baa*, *bab*, *aaab*, *abaa*, *abab*, *abaab*.

・ 同下 ・ ヨト ・ ヨト

- 1. If L is regular than SUBSEQ(L) is regular.
- 2. If L is context free than SUBSEQ(L) is context free.
- 3. If L is c.e. than SUBSEQ(L) is c.e.

What about: If L is decidable then SUBSEQ(L) is decidable.

VOTE: TRUE of FALSE.

If L is ANY subset of Σ^* WHATSOEVER then SUBSEQ(L) is regular.

Higman first proved this theorem in the 1950's using different terminology.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition: A set together with an ordering (X, \leq) is a *well quasi* ordering (wqo) if for any sequence x_1, x_2, \ldots there exists i, j such that i < j and $x_i \leq x_j$.

End of Definition

Note: If (X, \preceq) is a wqo then its both well founded and has no infinite antichains.

Lemma: The following are equivalent:

- (X, ≤) is a wqo,
- For any sequence x₁, x₂,... ∈ X there exists an *infinite* ascending subsequence.

End of Lemma

Try yourself in groups.

Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring:

COL(i,j) =

- ▶ UP if $x_i \preceq x_j$.
- ▶ DOWN if $x_j \prec x_j$.
- INC if x_i and x_j are incomparable.

By Ramsey there is homog set. If colored DOWN or INC then violates wqo. So must be UP.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition: If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 y$ and $x' \leq_2 y'$.

伺下 イヨト イヨト

Lemma: If (X, \leq_1) and (Y, \leq_2) are word then $(X \times Y, \leq)$ is a word (\leq defined as in the above definition). **End of Lemma** Try yourself in groups.

▲御▶ ★ 国▶ ★ 国▶

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots$ be an infinite sequence of elements from $A \times B$. Define the following coloring: COL(i, j) =

- UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- UP-DOWN if $x_i \leq x_j$ and $y_j \leq y_i$.
- ▶ UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

Use Ramsey's Theorem. UP-UP is the only possible color of a homog set, else either X or Y is not a wqo.

Lemma: Let (X, \preceq) be a countable wqo and let $Y \subseteq X$. Assume that Y is closed downward under \preceq . Then there exists a finite set of elements $\{z_1, \ldots, z_k\} \subseteq X - Y$ such that

 $y \in Y$ iff $(\forall i)[z_i \not\preceq y]$.

(The set $\{z_1, \ldots, z_k\}$ is called an *obstruction set*.) **End of Lemma**

Try yourself in groups.

Let OBS be the set of elements z such that

- 1. $z \notin Y$.
- 2. Every $y \leq z$ is in Y.

イロン イヨン イヨン イヨン

3

Claim 1: *OBS* **is finite** Try yourself in groups.

イロン イヨン イヨン イヨン

Э

Claim 1: OBS is finite

Try yourself in groups.

Proof of Claim 1: Every $z, z' \in OBS$ are incomparable: Assume NOT. Then $(\exists z, z')[z \preceq z']$. $z \in Y$ by part 2 of the definition of *OBS*. But if $z \in Y$ then $z \notin OBS$. Contradiction. Assume that *OBS* is infinite. Then the elements of *OBS* (in any order) form an infinite anti-chain. Contradicts wqo.

End of Proof of Claim 1

Finish it Up

Let $OBS = \{z_1, z_2, ...\}$. Claim 2: For all *y*:

 $y \in Y$ iff $(\forall i)[z_i \not\preceq y]$.

Try yourself in groups.

・ロト ・回ト ・ヨト ・ヨト

3

Finish it Up

Let
$$OBS = \{z_1, z_2, ...\}$$
.
Claim 2: For all *y*:

 $y \in Y$ iff $(\forall i)[z_i \not\preceq y]$.

Try yourself in groups. **Proof of Claim 2:** Contrapositive:

 $y \notin Y$ iff $(\exists i)[z_i \preceq y]$.

Assume $y \notin Y$. If $y \in OBS$ DONE. If $y \notin OBS$ then $(\exists z_1)[z_1 \notin Y \land z_1 \prec y]$. If $z \in OBS$ DONE. If not then repeat. If process STOPS then DONE. If not then $\cdots z_{17} \prec z_{16} \prec \cdots \prec z_1 \prec y]$, violates wqo. End of Proof of Claim 2 and of Proof

伺 ト イヨト イヨト

The subsequence order on Σ^* :, which we denote \preceq_{subseq} , is defined as $x \preceq_{\text{subseq}} y$ if x is a subsequence of y.

Theorem: $(\Sigma^*, \preceq_{subseq})$ is a wqo.

イロン イヨン イヨン イヨン

Э

Assume not. Obtain MIN BAD SEQUENCE

 y_1, y_2, \ldots

Let
$$y_i = y'_i \sigma_i$$
 where $\sigma_i \in \Sigma$.
Let $Y = \{y'_1, y'_2, \ldots\}$.

イロト イポト イヨト イヨト 三日

Y is a wqo

Claim: Y is a wgo. Proof of Claim: Assume not. Bad Sequence: $y'_{k_1}, y'_{k_2}, \dots$ (can take $k_1 \leq \{k_2, k_3, \dots\}$). Consider: $y_1, y_2, \ldots, y_{k_1-1}, y'_{k_2}, y'_{k_2}, \ldots$ This is BAD. if $i < j \le k_1 - 1$ and $y_i \le y_i$ then y_1, y_2, \ldots is not BAD. if i < j and $y'_{k_i} \leq y'_{k_i}$ then $y'_{k_1}, y'_{k_2}, \ldots$ is not BAD. if $i \leq k_j$ an $y_i \leq y'_{k_i}$ then $y_i \leq y'_{k_i} \leq y'_{k_i} \sigma k_j = y_{k_j}$. KEY: $i < k_j$. So y_1, y_2, \ldots is not BAD. SO y_1, y_2, \ldots is BAD. It begins $y_1, y_2, \ldots, y_{k_1-1}$. Its k_1 th element is y'_{k_1} which is SHORTER than y_{k_1} . Contradicts y_1, y_2, \ldots , being a MINIMAL bad sequence. End of Proof of Claim

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Y is a wqo. Σ is a wqo. So $Y\times\Sigma$ is a wqo. Look at the sequence

 $(y'_1, \sigma_1), (y'_2, \sigma_2), \ldots$

where $y_i = y'_i \sigma_i$. There exists i < j with $(y'_i, \sigma_i) \prec_{cross} (y'_j, \sigma_j)$. Hence $y'_i \sigma_i \prec_{subseq} y'_j \sigma_j$. Hence $y_i \prec y_j$. Contradicts y_1, y_2, \ldots being BAD.

Theorem: Let Σ be a finite alphabet. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is regular. **Proof:** Σ is a wqo. Hence $(\Sigma^*, \preceq_{subseq})$ is a wqo. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is closed under \preceq_{subseq} . So SUBSEQ(L) has a finite obstruction set. Hence regular.

Given a DFA, CFG, P-machine, NP-machine, TM (decidable), TM (c.e.) for a language L, can one actually obtain a DFA for SUBSEQ(L)? For that matter, can you obtain a CFG, etc for SUBSEQ(L)? Gasarch, Fenner, Postow showed all of the NCON below. Leeuwen the CFG/REG CON result. The rest are easy.

	SBSEQ(REG)	SBSEQ(CFG)	SBSEQ(DEC)	SBSEQ(C.E.)
REG	CON	CON	CON	CON
CFG	CON	CON	CON	CON
DEC	NCON	NCON	NCON	CON
С.Е.	NCON	NCON	NCON	CON