Lemmas Needed For Finite Canonical Ramsey Theorem

William Gasarch-U of MD

William Gasarch-U of MD Lemmas Needed For Finite Canonical Ramsey Theorem

(ロ) (部) (E) (E)

Definition: Let $COL : {[m] \choose 2} \to \omega$. Let *c* be a color and let $v \in [m]$.

- 1. $\deg_c(x)$ is the number of *c*-colored edges (x, y).
- 2. A *bad triple* is a triple *a*, *b*, *c* such that *a*, *b*, *c* does not form a rainbow K₃.

Lemma: Let $COL: \binom{[m]}{2} \to \omega$ be such that, for every color c and vertex v, $\deg_c(v) \leq d$. Then there exists a Rainbow set of size $\Omega(m^{1/3})$.

DO IN GROUPS.

(本間) (本語) (本語)

Lemma: Let $COL: \binom{[m]}{2} \to \omega$ be such that, for every color c and vertex v, $\deg_c(v) \leq d$. Then the number of bad triples is less than $\frac{dm^2}{6}$.

DO IN GROUPS

(4月) (日) (日)

Lemma: Let $COL: {[m] \choose 2} \to \omega$ be such that there are $\leq b$ bad triples. Let $1 \leq m' \leq m$. There exists an *m'*-sized set of vertices with $\leq b(\frac{m'}{m})^3$ bad triples.

DO IN GROUPS

(1日) (日) (日)