
1 The Orthogonal Vectors Conjecture

In this chapter we have used the 3SUM conjecture as a hardness assumption
to obtain quadratic lower bounds. There is one other candidate for a hardness
assumption to obtain quadratic lower bounds:

The Orthogonal Vectors Conjecture

Problem 1 Orthogonal Vectors (OV)
INSTANCE : n vectors in {0, 1}d where d = O(logn).
QUESTION : Do two of the vectors have an inner product that is 0 mod

2?

A naive algorithm for OV solves it in time O(n2d) by trying all possible
pairs. Abboud et al. [2] obtained the following slight improvement.

Theorem 1 There is a randomized algorithm of OV that runs in time O(n
2−Ω( l

log( dn )
)
).

There are no known algorithms for the problem that run in time n2−ε for
some ε > 0. This leads to the following conjecture, due to Williams [11]. See
also Abboud et al. [3], Backurs et al. [4], and Abboud et al. [1]

Conjecture 1 The Orthogonal Vectors Conjecture (OVC) For all
ε > 0, there is a c ≥ 1 such that OV cannot be solved in time n2−ε on
instances with d = c log(n).

We now have several conjectures with rather concrete bounds in them:
ETH, SETH, 3SUM, and now OVC. Clearly SETH =⇒ ETH. Are any
other implications known? Yes. Williams [11] showed the following.

Theorem 2 SETH =⇒ OVC.

The lack of any subquadratic algorithm for OV, and Theorem 2, are evi-
dence for OVC. In addition, OVC holds in several restricted computational
models. Kane & Williams [9] show:

1. OV has branching complexity Θ̃(n ·min(n, 2d)) for all sufficiently large
n, d. (Recall that Θ̃(f(n)) means that we ignore log factors.)

2. OV has Boolean formula complexity Θ̃(n ·min(n, 2d)) over all complete
bases of O(1) fan-in.
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3. OV requires Θ̃(n · min(n, 2d)) wires, in formulas comprised of gates
computing arbitrary symmetric functions of unbounded fan-in.

1.1 What Does OVC Imply and Vice Versa

Theorem 3 Assume OVC. Then the following problems do not have sub-
quadratic algorithms.

1. (Backurs & Indyk [4]) Edit Distance: Given 2 strings x, y how many
times do you need to delete or insert of replace a letter from either so
that at the end the resulting strings are the same. (There are many
variants depending on what operations are allowed.)

2. (Bringmann [6]) Frechet Distance: This is a measure of similarity be-
tween two curves that takes into account the location and ordering of
the points on the curve. The formal definition is rather long so we omit
it.

3. (Backurs & Indyk [5]) Regular Expression Matching: Given a regular
expression p and a string t, does p generate some substring of t.

4. (Roditty & V. Williams [10]) Approximating the diameter of a graph:
See Definition ??.

5. (Burchin et al. [7]) Curve Simplification: This has to do with finding
a polygonal curve that is close to the origina. The formal definition is
rather long so we omit it.

While the above results show that many problems are subquadratic as-
suming OV is subquadratic, this does not necessarily imply that they are
equivalent to OV. Hence Chen & Williams [8] study equivalences between
OV and different problems. They showed the following.

Theorem 4 Each of the following problems is subquadratic-equivalent to
OV.

1. Min-IP: Given n blue vectors in {0, 1}d, and n red vectors in {0, 1}d,
find the red-blue pair of vectors with minimum inner product.

2. Max-IP: Given n blue vectors in {0, 1}d, and n red vectors in {0, 1}d,
find the red-blue pair of vectors with maximum inner product.
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3. Equals-IP: Given n blue vectors in {0, 1}d, and n red vectors in {0, 1}d,
and an integer k, find a red-blue pair of vectors with inner product k,
or report that none exists.

4. Red-Blue-Closest Pair: Let p ∈ [1, 2] and d = no(1). Approximating
the `p-closest red-blue pair among n red points and n blue points in Rd.
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