HW01. ALL SET TO GO

Exercise 0.1 For each of the following problems, either (I) show that the problem is in P by giving a polynomial-time algorithm or (II) show that the problem is NP-hard by reducing one of the following to it: (a) 3-Partition, (b) 3-Dimensional Matching, or (c) Numerical 3-Dimensional Matching.

1. Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \cdots, S_{n} of size 2 such that each set sums to t.
2. Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \cdots, S_{n} of any size such that each set sums to t.
3. Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ and a sequence of target numbers $\left\langle t_{1}, \cdots, t_{n}\right\rangle$, find a partition of A into n sets S_{1}, \cdots, S_{n} of size 2 such that for each $i \in\{1, \cdots, n\}$, the sum of the elements in S_{i} is t_{i}.

Exercise 0.2 Give a direct reduction from 3-Partition to Partition. Hint First reduce directly from 3-Partition to Subset-Sum, then modify the proof to work with Partition.

Exercise 0.3 The connected bisection problem is as follows. The input is a graph $G=(V, E)$ with n vertices. Determine if V can be partitioned into two sets, each of size $n / 2$ such that each part induces a connected subgraph. Show that this problem is NP-hard.

Exercise 0.4 Prove that for not all-equal integers a, b, and $c,\left(a, a^{3}\right),\left(b, b^{3}\right)$ and $\left(c, c^{3}\right)$ are collinear if and only if $a+b+c=0$.

Exercise 0.5 Let $f: \mathrm{N} \rightarrow \mathrm{R}$ be a function, with $f(n) \geq n$. Prove that $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ (hence $\left.\operatorname{NPSPACE}=\operatorname{PSPACE}\right)$.

Exercise 0.6 Give a sub-cubic reduction from Negative-Triangle to Median.

