Algorithmic Lower Bounds - Assignment 1

Professor: Mohammad T. Hajiaghayi

Problem 1. For each of the following problems, either show that the problem is in P by giving a polynomial-time algorithm or show that the problem is NP-hard by reducing from 3-Partition, its variants 3-Dimensional Matching ${ }^{1}$, or Numerical 3-Dimensional Matching ${ }^{2}$.
(a) Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \cdots, S_{n} of size 2 such that each set sums to t.
(b) Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \cdots, S_{n} of any size such that each set sums to t.
(c) Given a set of numbers $A=\left\{a_{1}, \cdots, a_{2 n}\right\}$ and a sequence of target numbers $\left\langle t_{1}, \cdots, t_{n}\right\rangle$, find a partition of A into n sets S_{1}, \cdots, S_{n} of size 2 such that for each $i \in\{1, \cdots, n\}$, the sum of the elements in S_{i} is t_{i}.

Solution. (a) Create a graph with one vertex for each input number. For each pair of numbers a_{i}, a_{j} check whether $a_{i}+a_{j}=t$. If so, add an edge to the graph. Otherwise, there should be no edge between a_{i} and a_{j}. Hence, each edge represents a possible group in the partition. Next, run a matching algorithm. If the result is a perfect matching, we can construct the corresponding partition by creating one group for each edge in the matching. Because we start with a matching, each a_{i} can belong to at most one group in the corresponding partition. And because the matching that we start with is perfect, we are guaranteed to haven groups of size 2 . The converse is also true. Suppose that we have a partition satisfying the problem constraints. For each group $\left\{a_{i}, a_{j}\right\}$ in the partition, we are guaranteed that $a_{i}+a_{j}=t$, so the corresponding edge $\left(a_{i}, a_{j}\right)$ must exist. Hence, we can add it to the matching. Because we started with a partition, no two edges in the matching share an endpoint. And because the number of groups is n while the number of vertices is $2 n$, we know that the matching constructed in this fashion must be perfect.
(b) Reduce from standard 3-Partition (the variant where any number of numbers is allowed to belong to a single group). Let $a_{1}, \ldots, a_{3 n}$ be the groups of input numbers. Define a new sequence of numbers $b_{1}, \ldots, b_{4 n}$ as follows:

$$
b_{i}= \begin{cases}a_{i} & \text { if } i \leq 3 n \\ t & \text { otherwise }\end{cases}
$$

[^0]Suppose that we are given a partition of these numbers into $2 n$ groups that sum to t. Clearly, $b_{3 n+1}, \ldots, b_{4 n}=t$, so any group containing one of those nnumbers cannot contain any other numbers. Hence, the remaining n groups must contain all $3 n$ numbers from the original 3-Partition instance. Furthermore, each group must sum to t. Hence, the assignment of those numbers to the remaining n groups tells us how to solve the original 3-Partition problem.
(c) Reduction from Numerical 3-Dimensional Matching. Given $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=$ $\left\{b_{1}, \ldots, b_{n}\right\}$, and $C=\left\{c_{1}, \ldots, c_{n}\right\}$, with target sum t, we define the new numbers as follows:

$$
\begin{aligned}
& d_{2(i-1)+1}=2 a_{i}+0 \\
& d_{2(i-1)+2}=2 b_{i}+1
\end{aligned}
$$

And the target values are:

$$
q_{i}=2\left(t-c_{i}\right)+1
$$

Suppose that we have a sequence of groups S_{1}, \ldots, S_{n} satisfying the desired constraints. By examining the targets modulo 2, we can see that each group must contain exactly one number that is equivalent to $1 \bmod 2$. By construction, only the numbers $d_{2(i-1)+2} \equiv 1 \bmod 2$. Therefore, each group must contain exactly one number $d_{2(i-1)+2}=2 b_{i}+1$, and the other number in each group must be some $d_{2(j-1)+1}=2 a_{j}+0$. So for the $k^{t h}$ group, we must have:

$$
d_{2(i-1)+2}+d_{2(j-1)+1}=q_{k} \Rightarrow 2 b_{i}+1+2 a_{j}+0=2\left(t-c_{k}\right)+1 \Rightarrow a_{j}+b_{i}+c_{k}=t
$$

Which is precisely what we wanted.
Conversely, suppose that we have a solution to the original Numerical 3-Dimensional Matching instance. Then for each group $\left\{a_{i}, b_{j}, c_{k}\right\}$, we set $S_{k}=\left\{d_{2(i-1)+1}, d_{2(j-1)+2}\right\}$. We are guaranteed that $a_{i}+b_{j}+c_{k}=t$, so we have:

$$
\sum_{x \in S_{k}} x=2 a_{i}+0+2 b_{j}+1=2\left(a_{i}+b_{j}\right)+1=2\left(t-c_{k}\right)+1=q_{k}
$$

Problem 2. Give a direct reduction from 3-Partition to Partition. ${ }^{3}$
Solution. Let $a_{1}, \ldots, a_{3 n}$ be the multiset of numbers to partition, and let T be the target sum for each group. For each number a_{i} and each possible group $k \in\{0, \ldots, n-1\}$, we add the following number to our Subset-sum instance:

$$
x_{i, k}=1 \cdot(T n)^{n+i}+a_{i} \cdot(T n)^{k}
$$

The target number we aim for in a Subset-Sum problem would be:

$$
T^{\prime}=\sum_{i=1}^{3 n} 1 \cdot(T n)^{n+i}+\sum_{k=0}^{n-1} T \cdot(T n)^{k}
$$

Consider the values mod $(T n)$. Clearly, $T^{\prime} \bmod (T n)=T$, and for $k \neq 0, x_{i, k} \bmod (T n)=0$. So in order to get our target sum, we need to use a subset of the numbers $x_{1,0}, \ldots, x_{n, 0}$ that sums to $T \bmod (T n)$. By construction, this is equivalent to finding a subset of the numbers $a_{1}, \ldots, a_{3 n}$ that sums to T, and then using the corresponding numbers $x_{i, 0}$ in our SubsetSum problem. A similar argument shows that, for any $k \in\{0, \ldots, n-1\}$, we must pick numbers $x_{i_{1}, k}, \ldots, x_{i_{q}, k}$ such that $a_{i_{1}}+\ldots+a_{i_{q}}=T$. Furthermore, if we examine the sum mod $(T n)^{n+i+1}$ for each $i \in\{1, \ldots, 3 n\}$, it is clear to see that for each number $i \in\{1, \ldots, 3 n\}$, we can pick only one $x_{i, k}$ to belong to our subset sum. Hence, if we can find a subset of numbers that sums to the target, we know that there must exist a partition of $a_{1}, \ldots, a_{3 n}$ into n groups, each of which sums to T.

Next, we wish to convert our reduction to Subset-Sum into a reduction to Partition. The sum of all numbers in our problem is

$$
\begin{aligned}
Q & =\sum_{i=1}^{3 n} \sum_{k=0}^{n-1} x_{i, k} \\
& =\sum_{i=1}^{3 n} \sum_{k=0}^{n-1}\left(1 \cdot(T n)^{n+i}+a_{i} \cdot(T n)^{k}\right) \\
& =\sum_{i=1}^{3 n} n \cdot(T n)^{n+i}+\sum_{k=0}^{n-1}(T n) \cdot(T n)^{k}
\end{aligned}
$$

To ensure that we find a subset that sums to T^{\prime}, we add one extra number $Q-2 T^{\prime}$. (Note that because Q is very large in comparison to T^{\prime}, this new number will not be negative.) With this extra number, the new total becomes $2 Q-2 T^{\prime}$, so a solution to the Partition problem must make both halves sum to $Q-T^{\prime}$. One of those halves must contain the extra number $Q-2 T^{\prime}$, so the set of all other numbers in that half must sum to $\left(Q-T^{\prime}\right)-\left(Q-2 T^{\prime}\right)=T^{\prime}$, which is precisely what we wanted.

[^1]Problem 3. In the connected bisection problem, given a graph $G=(V, E)$ with n vertices, one needs to decide if V can be partitioned into two sets, each of size $n / 2$ such that each part induces a connected subgraph. Show that this problem is NP-hard.

Solution. We give a reduction from 3-dimensional matching to the connected bisection problem. Consider an instance of the 3-dimensional matching problem that we are given sets X, Y, Z each of size n, and a set $T \subseteq X \times Y \times Z$ of triplets, and we want to decide whether or not, there is a matching $M \subseteq T$, i.e., $|M|=n$ and each element of X, Y, Z occurs in exactly one triple of M. A bipartite view of the 3-dimensional matching problem is as follows: We construct a graph $G=(A, B, E)$ where we have a vertex in A for each of the elements in $X \cup Y \cup Z$ and we also have a vertex in B for each of the triplets in T, and for each triplet $t=(x, y, z)$, we connect its vertex in B to the vertices of x, y and z in A. The goal is to pick a matching which is a subset M of vertices in B such that each vertex in A is neighbor to exactly one vertex in M. Given this instance, we construct graph G^{\prime} as follows:

We add two vertices a and b and connect them to each vertex in B. Let

$$
n_{a}=(3 n+1) n^{3}+5 n-|T|,
$$

and

$$
n_{b}=n^{3} .
$$

We add a path of length n_{a} and connect it to the vertex a. Also, for each vertex $v \in\{b\} \cup A$, we add a path of length n_{b} and connect it to v. The total number of vertices in graph G^{\prime} is

$$
n^{\prime}=2+3 n+|T|+n_{a}+(1+3 n) n_{b}=2\left(n_{a}+1+|T|-n\right)
$$

We show that G^{\prime} can be partitioned into 2 connected subgraphs $G[S], G\left[S^{\prime}\right]$ where $|S|=$ $\left|S^{\prime}\right|=n^{\prime} / 2$ if and only if B contains a matching.

First suppose that B contains a matching M. Let $S=\{a\} \cup P_{a} \cup(B-M)$ (and S^{\prime} be other vertices) where P_{a} is the path of length n_{a} which is connected to a. It is straightforward to check that $|S|=n^{\prime} / 2$ and that $G[S], G\left[S^{\prime}\right]$ are both connected.

Conversely if such an S exists we can assume $a \in S$. It follows that $P_{a} \subseteq S$. Now $|S-(P \cup\{a\})|=|T|-n<n_{b}$. Now if a vertex $v \in\{b\} \cup A$ is in S, then it implies that the path of length n_{b} which is connected to this vertex is also in S. However, $|S-(P \cup\{a\})|<n_{b}$ and it implies that none of the vertices in $\{b\} \cup A$ are in S. Thus $S-(P \cup\{a\}) \subseteq B$. Let $M=B-S$. Now $|M|=n$ and M must be a matching as $A \subseteq S^{\prime}$ means that M "covers" A.

Problem 4. Let $a, b, c \in \mathbb{Z}$ such that $a \neq b, a \neq c$, and $b \neq c$. Prove that for not all-equal $\left(a, a^{3}\right),\left(b, b^{3}\right)$ and $\left(c, c^{3}\right)$ are collinear if and only if $a+b+c=0$.

Solution. We need to show that the three points $\left(a, a^{3}\right),\left(b, b^{3}\right)$ and $\left(c, c^{3}\right)$ are collinear if and only if $a+b+c=0$. Let us assume that the three points are collinear. Then the point $\left(c, c^{3}\right)$ satisfies the equation of the line that passes through the points $\left(a, a^{3}\right)$ and $\left(b, b^{3}\right)$, i.e., we have:

$$
\begin{aligned}
& \frac{c-a}{b-a}=\frac{c^{3}-a^{3}}{b^{3}-a^{3}} \\
& \Rightarrow \frac{c-a}{b-a}=\frac{(c-a)\left(c^{2}+a c+a^{2}\right)}{(b-a)\left(b^{2}+a b+a^{2}\right)} \\
& \Rightarrow b^{2}+a b+a^{2}=c^{2}+a c+a^{2} \\
& \Rightarrow b^{2}-c^{2}=-a(b-c) \\
& \Rightarrow b+c=-a \\
& \Rightarrow a+b+c=0
\end{aligned}
$$

Assuming $a+b+c=0$ and following the same chain of equations in the opposite direction, we get that the required points are collinear.

Problem 5. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function, with $f(n) \geq n$. Prove that $\operatorname{NSPACE}(f(n)) \subseteq$ $\operatorname{SPACE}\left(f(n)^{2}\right)$.
Note that above proves NPSPACE $=$ PSPACE .
Solution. We first show that given a directed graph of n vertices and two special vertices s and t in the graph, we can determine if t is reachable from s using only $O\left(\log ^{2} n\right)$ space. Consider the following algorithm: Let reach (u, v, k) be a boolean function that is true $(=1)$ if and only if there is a path from vertex u to v of length $\leq k$. We need to evaluate reach (s, t, n). Note that $\operatorname{reach}(u, v, k)=\exists w$ s.t. $\operatorname{reach}(u, w,\lceil k / 2\rceil) \wedge \operatorname{reach}(w, v,\lfloor k / 2\rfloor)$. This formulation leads to an easy recursive algorithm. As the length of the path reduces by a factor of 2 at each step, the recursion depth is $O(\log n)$. At each level of the recursion, we only need to space for the "guessed" vertex w that requires $O(\log n)$ bits. This leads to a total space complexity of $O\left(\log ^{2} n\right)$. Hence, we can determine if t is reachable from s in an n-node directed graph in $O\left(\log ^{2} n\right)$ space.
Now, for any language $L \in \operatorname{NSPACE}(f(n))$, we can construct a directed graph with $O\left(2^{f(n)}\right)$ vertices (one vertex for each configuration of the turing machine) such that for any input x, the graph has a path from the starting configuration on input x to an accepting configuration if and only if $x \in L$. Hence, determining connectivity is sufficient to determine if $x \in L$. Now, using the above algorithm, we can determine s - t connectivity in $\operatorname{SPACE}\left(\log ^{2}\left(2^{f(n)}\right)\right)=$ $\operatorname{SPACE}\left(f(n)^{2}\right)$.

Problem 6. Give a sub-cubic reduction from Negative-Triangle to Median.
Solution. Let $(G=(V, E), w)$ be the given instance of Negative Triangle. Consider the directed case, the proof for the undirected case is similar. Create a weighted directed graph $\left(G^{\prime}, w^{\prime}\right)$. Graph G^{\prime} contains five copies $A, B, B^{\prime}, C, C^{\prime}$ of V. With the usual notation, v_{A} is the copy of v in A and similarly for the other sets. Let $Q=\Theta(M)$ be a large enough integer. For any pair of nodes u, v, we add the edges $u_{A} v_{B}$ of weight $Q+w(u v), u_{A} v_{B^{\prime}}$, of weight $Q-w(u v), u_{A} v_{C}$ of weight $2 Q-w(u v), u_{A} v_{C^{\prime}}$, of weight $2 Q+w(u v)$, and $u_{B} v_{C}$ of weight $Q+w(u v)$. In this construction, when $u v \notin E$ (including the special case $u=v$), we simply assume $w(u v)=2 M$. Furthermore, we add a dummy node r, and edges $r v_{A}$ and $v_{A} r$ of weight $Q / 4$ for any $v \in V$.

In this graph we compute the median value M^{*}, and output YES to the input instance of Negative triangle iff $M^{*}<Q / 4+(n-1) Q / 2+6 n Q$. The running time of the algorithm is $\tilde{O}(m+T(O(n), O(M)))=\tilde{O}(T(n, M))$. Let us show its correctness. Next $d($.$) denotes$ distances in G^{\prime}. Observe that the median node has to be in $A \cup\{r\}$ since the remaining nodes cannot reach r. Note that

$$
\operatorname{Med}(r) \geq n Q / 4+2 n(Q / 4+2 Q-2 M)+2 n(Q / 4+Q-M)>Q / 4+(n-1) Q / 2+6 n Q
$$

On the other hand, for any node v_{a},

$$
\begin{aligned}
& \operatorname{Med}\left(v_{A}\right)=d\left(v_{A}, r\right)+\sum_{u \in V} d\left(v_{A}, u_{A}\right)+\sum_{u \in V}\left(d\left(v_{A}, u_{B}\right)+d\left(v_{A}, u_{B^{\prime}}\right)\right) \\
& \quad+\sum_{u \in V}\left(d\left(v_{A}, u_{C}\right)+d\left(v_{A}, u_{C^{\prime}}\right)\right) \\
& \quad=Q / 4+(n-1) Q / 2+\sum_{u \in V}(Q+w(v u)+Q-w(v u))+\sum_{u \in V}\left(d\left(v_{A}, u_{C}\right)+2 Q+w(v u)\right) \\
& \quad=Q / 4+(n-1) Q / 2+2 n Q+\sum_{u \in V}\left(d\left(v_{A}, u_{C}\right)+2 Q+w(v u)\right) \\
& \quad \leq Q / 4+(n-1) Q / 2+6 n Q
\end{aligned}
$$

Therefore the median is in A. In the last inequality we upper bounded $d\left(v_{A}, u_{C}\right)$ with $w^{\prime}\left(v_{A} u_{C}\right)=2 Q-w(v u)$. Observe that a strict inequality holds if there exists a third node z_{B} such that $w^{\prime}\left(v_{A} z_{B}\right)+w^{\prime}\left(z_{B} u_{C}\right)<w^{\prime}\left(v_{A} u_{C}\right)$. Note that this can happen only if $v u \in E$, since otherwise $w^{\prime}\left(v_{A} u_{C}\right)=2 Q-2 M \leq w^{\prime}\left(v_{A} z_{B}\right)+w^{\prime}\left(z_{B} u_{C}\right)$. Note also that, if either $v z \notin E$ or $z u \notin E, w^{\prime}\left(v_{A} z_{B}\right)+w^{\prime}\left(z_{B} u_{C}\right) \geq 2 Q+M \geq w^{\prime}\left(v_{A} u_{c}\right)$. Therefore we can conclude that the strict inequality holds iff there exists a triangle $\{v, z, u)$ in G such that $Q+w(v z)+Q+w(z u)<2 Q-w(v u)$, i.e. a negative triangle. The claim follows.

[^0]: ${ }^{1}$ see https://en.wikipedia.org/wiki/3-dimensional_matching
 ${ }^{2}$ see https://en.wikipedia.org/wiki/Numerical_3-dimensional_matching

[^1]: ${ }^{3}$ Hint: First reduce directly from 3-Partition to Subset-Sum, then modify the proof to work with Partition.

