BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Lower Bounds on Approx Clique Via PCP and Gaps

Notation for Size of Max Clique

If G is a graph then
$\omega(G)=$ the size of the max clique in G.

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$? NO. this is an easy exercise.

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$? NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$? NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?

YES. This is silly. Always output 1.

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?

NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?

YES. This is silly. Always output 1.
4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?

YES. This is silly. Always output 1.
4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$? YES. This is known. This is pathetic. Can we do better?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?

YES. This is silly. Always output 1.
4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$? YES. This is known. This is pathetic. Can we do better?
5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1 / 2}} \omega(G)$?

CLIQUE and APPROX

We assume $\mathrm{P} \neq \mathrm{NP}$.
Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?

NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$? NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$? YES. This is silly. Always output 1.
4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$? YES. This is known. This is pathetic. Can we do better?
5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1 / 2}} \omega(G)$? No. We will not quite show this but will show something close.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.
Assume CLIQ has such an alg. We call it the approx. We will derive a value of δ that gives $\mathrm{P}=\mathrm{NP}$.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.
Assume CLIQ has such an alg. We call it the approx. We will derive a value of δ that gives $\mathrm{P}=\mathrm{NP}$.
Let $A \in \mathrm{NP}$.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.
Assume CLIQ has such an alg. We call it the approx. We will derive a value of δ that gives $\mathrm{P}=\mathrm{NP}$.
Let $A \in$ NP.
By PCP Theorem there exists $c, d \in \mathbb{N}$ such that $A \in \mathrm{PCP}\left(c \lg n, d \lg n, \frac{1}{n}\right)$.

CLIQ is Hard To Approximate

Thm $(\exists \delta<1)$ st if there is an alg that, on input G, output a number $\geq \frac{1}{n^{\delta}} \omega(G)$ then $\mathrm{P}=\mathrm{NP}$.
We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives $\mathrm{P}=\mathrm{NP}$.
Let $A \in$ NP.
By PCP Theorem there exists $c, d \in \mathbb{N}$ such that
$A \in \mathrm{PCP}\left(c \lg n, d \lg n, \frac{1}{n}\right)$.
We use the following in a poly time program for A :

1. The approx which gives $\geq n^{-\delta} \omega(G)$.
2. The $\left(c \lg n, d \lg n, \frac{1}{n}\right)$ PCP for A.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in\{0,1\}^{d \lg n}$. We use these as random bits.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in\{0,1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in\{0,1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.
Simulate PCP on x with $\sigma \tau$ and $\sigma^{\prime} \tau^{\prime}$. Either

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in\{0,1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.
Simulate PCP on x with $\sigma \tau$ and $\sigma^{\prime} \tau^{\prime}$. Either

1) (\exists) a query that they answer differently. Inconsistent

Preparation for Algorithm for A

Let $x \in\{0,1\}^{n}$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in\{0,1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in\{0,1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.
Simulate PCP on x with $\sigma \tau$ and $\sigma^{\prime} \tau^{\prime}$. Either

1) (\exists) a query that they answer differently. Inconsistent
2) (\forall) queries in common they answer the same. Consistent

Algorithm for A

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st $\left(\forall \tau \in\{0,1\}^{d \lg n}\right)$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \lg n}=n^{d}$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st $\left(\forall \tau \in\{0,1\}^{d \lg n}\right)$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \lg n}=n^{d}$.
$3.2 x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in\{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st $\left(\forall \tau \in\{0,1\}^{d \lg n}\right)$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \lg n}=n^{d}$.
$3.2 x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in\{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.
4. Run the approx alg on G.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st $\left(\forall \tau \in\{0,1\}^{d \lg n}\right)$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \lg n}=n^{d}$.
$3.2 x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in\{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.
4. Run the approx alg on G.
$4.1 x \in A \rightarrow \omega(G) \geq 2^{d \lg n}=n^{d}$, so approx alg $\geq n^{d}|V|^{-\delta}=n^{d}\left(n^{(c+d)}\right)^{-\delta}=n^{d-(c+d) \delta}$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st $\left(\forall \tau \in\{0,1\}^{d \lg n}\right)$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \lg n}=n^{d}$.
$3.2 x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in\{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.
4. Run the approx alg on G.
$4.1 x \in A \rightarrow \omega(G) \geq 2^{d \lg n}=n^{d}$, so approx alg
$\geq n^{d}|V|^{-\delta}=n^{d}\left(n^{(c+d)}\right)^{-\delta}=n^{d-(c+d) \delta}$.
$4.2 \times \notin A \rightarrow \omega(G) \leq n^{d-1}$, so approx alg $\leq n^{d-1}$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2 .
2. Form a graph G :
1) $V=\sigma \tau \in\{0,1\}^{c \lg n+d \lg n}$. So $|V|=n^{c+d}$.
2) $\left(\sigma \tau, \sigma^{\prime} \tau^{\prime}\right) \in E$ if both accept and pair is consistent.
3. $3.1 x \in A \rightarrow(\exists)$ a cons way to answer queries st

$$
\begin{aligned}
& \left(\forall \tau \in\{0,1\}^{d \lg n}\right) \text {, PCP on }(x, \tau) \text { ACC. So } \\
& \omega(G) \geq 2^{d \lg n}=n^{d} .
\end{aligned}
$$

$3.2 x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in\{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.
4. Run the approx alg on G.
$4.1 x \in A \rightarrow \omega(G) \geq 2^{d \lg n}=n^{d}$, so approx alg
$\geq n^{d}|V|^{-\delta}=n^{d}\left(n^{(c+d)}\right)^{-\delta}=n^{d-(c+d) \delta}$.
$4.2 x \notin A \rightarrow \omega(G) \leq n^{d-1}$, so approx alg $\leq n^{d-1}$.
In order to make these two cases not overlap we need

$$
\begin{gathered}
d-1<d-(c+d) \delta \\
\delta<\frac{1}{c+d}
\end{gathered}
$$

Finishing Up The Algorithm

And now back to our alg. 5.

Finishing Up The Algorithm

And now back to our alg. 5.

1. If the approx alg outputs a number $\geq n^{d-(c+d) \delta}$ then output YES.

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number $\geq n^{d-(c+d) \delta}$ then output YES.
2. If the approx alg outputs a number $<n^{d-1}$ then output NO.

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number $\geq n^{d-(c+d) \delta}$ then output YES.
2. If the approx alg outputs a number $<n^{d-1}$ then output NO.
3. By our comments, no other case will occur.

More is Known

We proved Thm $(\exists \delta<1)$ st if CLIQ is n^{δ}-approx then $\mathrm{P}=\mathrm{NP}$.

More is Known

We proved Thm $(\exists \delta<1)$ st if CLIQ is n^{δ}-approx then $\mathrm{P}=\mathrm{NP}$.
What is δ ? One could dig through the PCP machinery to find it.

More is Known

We proved Thm $(\exists \delta<1)$ st if CLIQ is n^{δ}-approx then $\mathrm{P}=\mathrm{NP}$.
What is δ ? One could dig through the PCP machinery to find it.
Do not bother! The following is known.

More is Known

We proved Thm $(\exists \delta<1)$ st if CLIQ is n^{δ}-approx then $\mathrm{P}=\mathrm{NP}$.
What is δ ? One could dig through the PCP machinery to find it.
Do not bother! The following is known.
Thm $(\forall \delta<1)$ if CLIQ is n^{δ}-approx then $\mathrm{P}=\mathrm{NP}$.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
3) Further evidence that $\mathrm{P} \neq \mathrm{NP}$ has great explanatory power.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
3) Further evidence that $P \neq N P$ has great explanatory power.
4) Is this a basic problem, like SAT?

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
3) Further evidence that $P \neq N P$ has great explanatory power.
4) Is this a basic problem, like SAT?

Can we use CLIQ to get other problems not approx?

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
3) Further evidence that $P \neq N P$ has great explanatory power.
4) Is this a basic problem, like SAT?

Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

Clique is Hard to Approximate: Now What?

On this slide we assume $\mathrm{P} \neq \mathrm{NP}$.
Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta>0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.
1) Yeah Very close upper and lower bounds!
2) Boo $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
3) Further evidence that $P \neq N P$ has great explanatory power.
4) Is this a basic problem, like SAT?

Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.
5) We now turn to a SAT-like non-approx result.

