
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Lower Bounds on Approx
Clique

Via PCP and Gaps

Notation for Size of Max Clique

If G is a graph then

ω(G) = the size of the max clique in G .

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)?

.
NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?

No. We will not quite show this but will show something close.

CLIQUE and APPROX

We assume P 6= NP.

Given G , want to obtain ω(G).

Questions

1. Is there an alg that, given G , output a number ≥ 1
2ω(G)?

NO. this is an easy exercise.

2. Is there an alg that, given G , output a number ≥ 1
84ω(G)? .

NO. this is an easy exercise.

3. Is there an alg that, given G , output a number ≥ 1
nω(G)?

YES. This is silly. Always output 1.

4. Is there an alg that, given G , output a number ≥ log n
n ω(G)?

YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G , output a number ≥ 1
n1/2

ω(G)?
No. We will not quite show this but will show something close.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.
Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.

Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.
Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.

We will derive a value of δ that gives P = NP.
Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.

Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.
Let A ∈ NP.

By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.
Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).

We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

CLIQ is Hard To Approximate

Thm (∃δ < 1) st if there is an alg that, on input G , output a
number ≥ 1

nδ
ω(G) then P = NP.

We will pick δ later.
Assume CLIQ has such an alg. We call it the approx.
We will derive a value of δ that gives P = NP.
Let A ∈ NP.
By PCP Theorem there exists c , d ∈ N such that
A ∈ PCP(c lg n, d lg n, 1n).
We use the following in a poly time program for A:

1. The approx which gives ≥ n−δω(G).

2. The (c lg n, d lg n, 1n) PCP for A.

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either

1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent

2) (∀) queries in common they answer the same. Consistent

Preparation for Algorithm for A

Let x ∈ {0, 1}n.

We can simulate PCP on x given query answers and random bits.

Let σ ∈ {0, 1}c lg n. We use these as answers to queries.

Let τ ∈ {0, 1}d lg n. We use these as random bits.

Can simulate PCP on x with στ . Will ACC or REJ.

Simulate PCP on x with στ and σ′τ ′. Either
1) (∃) a query that they answer differently. Inconsistent
2) (∀) queries in common they answer the same. Consistent

Algorithm for A

1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.

2. Form a graph G :
1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.

3. 3.1 x ∈ A → (∃) a cons way to answer queries st
(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.

4. Run the approx alg on G .
4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Algorithm for A
1. Input x . We assume |x | is power of 2.
2. Form a graph G :

1) V = στ ∈ {0, 1}c lg n+d lg n. So |V | = nc+d .

2) (στ, σ′τ ′) ∈ E if both accept and pair is consistent.
3. 3.1 x ∈ A → (∃) a cons way to answer queries st

(∀τ ∈ {0, 1}d lg n), PCP on (x , τ) ACC. So
ω(G) ≥ 2d lg n = nd .

3.2 x /∈ A → any cons way to answer the queries will make ≤ 1
n of

the τ ∈ {0, 1}d lg n acc. So ω(G) ≤ nd−1.
4. Run the approx alg on G .

4.1 x ∈ A → ω(G) ≥ 2d lg n = nd , so approx alg
≥ nd |V |−δ = nd(n(c+d))−δ = nd−(c+d)δ.

4.2 x /∈ A → ω(G) ≤ nd−1, so approx alg ≤ nd−1.

In order to make these two cases not overlap we need

d − 1 < d − (c + d)δ

δ <
1

c + d

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number ≥ nd−(c+d)δ then output
YES.

2. If the approx alg outputs a number < nd−1 then output NO.

3. By our comments, no other case will occur.

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number ≥ nd−(c+d)δ then output
YES.

2. If the approx alg outputs a number < nd−1 then output NO.

3. By our comments, no other case will occur.

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number ≥ nd−(c+d)δ then output
YES.

2. If the approx alg outputs a number < nd−1 then output NO.

3. By our comments, no other case will occur.

Finishing Up The Algorithm

And now back to our alg.
5.

1. If the approx alg outputs a number ≥ nd−(c+d)δ then output
YES.

2. If the approx alg outputs a number < nd−1 then output NO.

3. By our comments, no other case will occur.

More is Known

We proved Thm (∃δ < 1) st if CLIQ is nδ-approx then P = NP.

What is δ? One could dig through the PCP machinery to find it.

Do not bother! The following is known.
Thm (∀δ < 1) if CLIQ is nδ-approx then P = NP.

More is Known

We proved Thm (∃δ < 1) st if CLIQ is nδ-approx then P = NP.

What is δ? One could dig through the PCP machinery to find it.

Do not bother! The following is known.
Thm (∀δ < 1) if CLIQ is nδ-approx then P = NP.

More is Known

We proved Thm (∃δ < 1) st if CLIQ is nδ-approx then P = NP.

What is δ? One could dig through the PCP machinery to find it.

Do not bother! The following is known.

Thm (∀δ < 1) if CLIQ is nδ-approx then P = NP.

More is Known

We proved Thm (∃δ < 1) st if CLIQ is nδ-approx then P = NP.

What is δ? One could dig through the PCP machinery to find it.

Do not bother! The following is known.
Thm (∀δ < 1) if CLIQ is nδ-approx then P = NP.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.

Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open.

Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?

Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?

Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

Clique is Hard to Approximate: Now What?

On this slide we assume P 6= NP.
Some thoughts on the pair of results:

1. There exists an alg A such that A(G) ≥ log n
n ω(G).

2. For all δ > 0 there is no alg A with A(G) ≥ 1
nδ
ω(G).

1) Yeah Very close upper and lower bounds!

2) Boo (log n)O(1)

n -approx still open. Nobody cares.

3) Further evidence that P 6= NP has great explanatory power.

4) Is this a basic problem, like SAT?
Can we use CLIQ to get other problems not approx?
Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.

