BILL AND NATHAN, RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

BILL RECORD LECTURE!!!

Lower Bounds on Approx Clique Via PCP and Gaps

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Notation for Size of Max Clique

If G is a graph then

 $\omega(G)$ = the size of the max clique in G.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

```
We assume P \neq NP.
```

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$? NO. this is an easy exercise.

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$?

ション ふぼう メリン メリン しょうくしゃ

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.

ション ふぼう メリン メリン しょうくしゃ

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- 3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- Is there an alg that, given G, output a number ≥ ¹/_nω(G)?
 YES. This is silly. Always output 1.

ション ふぼう メリン メリン しょうくしゃ

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- 3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$? **YES**. This is silly. Always output 1.
- 4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$?

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- Is there an alg that, given G, output a number ≥ ¹/_nω(G)?
 YES. This is silly. Always output 1.
- 4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n}\omega(G)$? YES. This is known. This is pathetic. Can we do better?

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ¹/₂ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- Is there an alg that, given G, output a number ≥ ¹/_nω(G)?
 YES. This is silly. Always output 1.
- 4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n}\omega(G)$? YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}}\omega(G)$?

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

- Is there an alg that, given G, output a number ≥ ½ω(G)?
 NO. this is an easy exercise.
- 2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$? . NO. this is an easy exercise.
- Is there an alg that, given G, output a number ≥ ¹/_nω(G)?
 YES. This is silly. Always output 1.
- 4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n}\omega(G)$? YES. This is known. This is pathetic. Can we do better?
- 5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}}\omega(G)$? No. We will not quite show this but will show something close.

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later.

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later. Assume CLIQ has such an alg. We call it **the approx**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later. Assume CLIQ has such an alg. We call it **the approx**. We will derive a value of δ that gives P = NP.

ション ふぼう メリン メリン しょうくしゃ

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later. Assume CLIQ has such an alg. We call it **the approx**. We will derive a value of δ that gives P = NP. Let $A \in NP$.

ション ふぼう メリン メリン しょうくしゃ

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later. Assume CLIQ has such an alg. We call it **the approx**. We will derive a value of δ that gives P = NP. Let $A \in NP$. By PCP Theorem there exists $c, d \in \mathbb{N}$ such that $A \in PCP(c \lg n, d \lg n, \frac{1}{n})$.

Thm $(\exists \delta < 1)$ st if there is an alg that, on input *G*, output a number $\geq \frac{1}{n^{\delta}}\omega(G)$ then P = NP. We will pick δ later. Assume CLIQ has such an alg. We call it **the approx**. We will derive a value of δ that gives P = NP. Let $A \in NP$. By PCP Theorem there exists $c, d \in \mathbb{N}$ such that $A \in PCP(c \lg n, d \lg n, \frac{1}{n})$. We use the following in a poly time program for A:

- 1. The approx which gives $\geq n^{-\delta}\omega(G)$.
- 2. The $(c \lg n, d \lg n, \frac{1}{n})$ PCP for A.

Let $x \in \{0, 1\}^n$.

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries.

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0,1\}^{d \lg n}$. We use these as random bits.

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0,1\}^{d \lg n}$. We use these as random bits. Can simulate PCP on x with $\sigma\tau$. Will ACC or REJ.

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0,1\}^{d \lg n}$. We use these as random bits. Can simulate PCP on x with $\sigma\tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma \tau$ and $\sigma' \tau'$. Either

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0,1\}^{d \lg n}$. We use these as random bits. Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma\tau$ and $\sigma'\tau'$. Either 1) (\exists) a query that they answer differently. **Inconsistent**

Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0,1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0,1\}^{d \lg n}$. We use these as random bits. Can simulate PCP on x with $\sigma\tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma\tau$ and $\sigma'\tau'$. Either 1) (\exists) a query that they answer differently. **Inconsistent** 2) (\forall) queries in common they answer the same. **Consistent**

1. Input x. We assume |x| is power of 2.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. Input x. We assume |x| is power of 2.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. Form a graph G:

- 1. Input x. We assume |x| is power of 2.
- 2. Form a graph G:

1)
$$V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$$
. So $|V| = n^{c+d}$.

- 1. Input x. We assume |x| is power of 2.
- 2. Form a graph G:

1)
$$V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$$
. So $|V| = n^{c+d}$.

2) $(\sigma\tau, \sigma'\tau') \in E$ if both accept and pair is consistent.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1. Input x. We assume |x| is power of 2.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. Input x. We assume |x| is power of 2.

3.2 $x \notin A \to \text{any cons way to answer the queries will make} \le \frac{1}{n}$ of the $\tau \in \{0,1\}^{d \lg n}$ acc. So $\omega(G) \le n^{d-1}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1. Input x. We assume |x| is power of 2.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

the
$$\tau \in \{0,1\}^{d \lg n}$$
 acc. So $\omega(G) \le n^{d-1}$.

4. Run the approx alg on G.

1. Input x. We assume |x| is power of 2.

3.2 $x \notin A \to \text{any cons way to answer the queries will make} \le \frac{1}{n}$ of the $\tau \in \{0,1\}^{d \lg n}$ acc. So $\omega(G) \le n^{d-1}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

4. Run the approx alg on G.

4.1
$$x \in A \to \omega(G) \ge 2^{d \lg n} = n^d$$
, so approx alg
 $\ge n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^{d-(c+d)\delta}$.

- 1. Input x. We assume |x| is power of 2.
- Form a graph G:

 V = στ ∈ {0,1}^{c lg n+d lg n}. So |V| = n^{c+d}.
 (στ, σ'τ') ∈ E if both accept and pair is consistent.

 3.1 x ∈ A → (∃) a cons way to answer queries st (∀τ ∈ {0,1}^{d lg n}), PCP on (x, τ) ACC. So ω(G) ≥ 2^{d lg n} = n^d.
 3.2 x ∉ A → any cons way to answer the queries will make ≤ ¹/₂ of
 - 3.2 $x \notin A \to \text{any cons way to answer the queries will make } \leq \frac{1}{n}$ of the $\tau \in \{0,1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.

ション ふぼう メリン メリン しょうくしゃ

4. Run the approx alg on G.

4.1
$$x \in A \to \omega(G) \ge 2^{d \lg n} = n^d$$
, so approx alg
 $\ge n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^{d-(c+d)\delta}$.
4.2 $x \notin A \to \omega(G) \le n^{d-1}$, so approx alg $\le n^{d-1}$.

1. Input x. We assume |x| is power of 2.

the
$$au \in \{0,1\}^{d \lg n}$$
 acc. So $\omega(G) \leq n^{d-1}$

4. Run the approx alg on G.

4.1
$$x \in A \to \omega(G) \ge 2^{d \lg n} = n^d$$
, so approx alg
 $\ge n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^{d-(c+d)\delta}$.
4.2 $x \notin A \to \omega(G) \le n^{d-1}$, so approx alg $\le n^{d-1}$.

In order to make these two cases not overlap we need

$$d-1 < d-(c+d)\delta$$

 $\delta < rac{1}{c+d}$

Finishing Up The Algorithm

And now back to our alg. **5.**

Finishing Up The Algorithm

And now back to our alg. **5.**

1. If the approx alg outputs a number $\geq n^{d-(c+d)\delta}$ then output **YES**.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

And now back to our alg. **5.**

- 1. If the approx alg outputs a number $\geq n^{d-(c+d)\delta}$ then output **YES**.
- 2. If the approx alg outputs a number $< n^{d-1}$ then output **NO**.

And now back to our alg. **5.**

- 1. If the approx alg outputs a number $\geq n^{d-(c+d)\delta}$ then output **YES**.
- 2. If the approx alg outputs a number $< n^{d-1}$ then output **NO**.

3. By our comments, no other case will occur.

More is Known

We proved Thm ($\exists \delta < 1$) st if CLIQ is n^{δ} -approx then P = NP.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We proved Thm ($\exists \delta < 1$) st if CLIQ is n^{δ} -approx then P = NP. What is δ ? One could dig through the PCP machinery to find it.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We proved Thm ($\exists \delta < 1$) st if CLIQ is n^{δ} -approx then P = NP. What is δ ? One could dig through the PCP machinery to find it. Do not bother! The following is known.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We proved Thm ($\exists \delta < 1$) st if CLIQ is n^{δ} -approx then P = NP.

What is δ ? One could dig through the PCP machinery to find it.

ション ふぼう メリン メリン しょうくしゃ

Do not bother! The following is known. Thm ($\forall \delta < 1$) if CLIQ is n^{δ} -approx then P = NP.

On this slide we assume $\mathrm{P}\neq\mathrm{NP}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

On this slide we assume $\mathrm{P}\neq\mathrm{NP}.$ Some thoughts on the pair of results:

On this slide we assume $\mathrm{P}\neq\mathrm{NP}.$ Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{n^{\delta}}\omega(G)$.

ション ふぼう メリン メリン しょうくしゃ

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.

ション ふぼう メリン メリン しょうくしゃ

1) Yeah Very close upper and lower bounds!

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.

ション ふぼう メリン メリン しょうくしゃ

- 1) Yeah Very close upper and lower bounds!
- 2) Boo $\frac{(\log n)^{O(1)}}{n}$ -approx still open.

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.

ション ふぼう メリン メリン しょうくしゃ

Yeah Very close upper and lower bounds!
 Boo (log n)^{O(1)}/_n-approx still open. Nobody cares.

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.
- 1) Yeah Very close upper and lower bounds!
- 2) **Boo** $\frac{(\log n)^{O(1)}}{n}$ -approx still open. Nobody cares.
- 3) Further evidence that $\mathrm{P}\neq\mathrm{NP}$ has great explanatory power.

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.
- 1) Yeah Very close upper and lower bounds!
- 2) **Boo** $\frac{(\log n)^{O(1)}}{n}$ -approx still open. Nobody cares.
- 3) Further evidence that $\mathrm{P}\neq\mathrm{NP}$ has great explanatory power.

4) Is this a basic problem, like SAT?

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.
- 1) Yeah Very close upper and lower bounds!
- 2) Boo $\frac{(\log n)^{O(1)}}{n}$ -approx still open. Nobody cares.
- 3) Further evidence that $\mathrm{P}\neq\mathrm{NP}$ has great explanatory power.

4) Is this a basic problem, like SAT?

Can we use CLIQ to get other problems not approx?

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.
- 1) Yeah Very close upper and lower bounds!
- 2) **Boo** $\frac{(\log n)^{O(1)}}{n}$ -approx still open. Nobody cares.
- 3) Further evidence that $\mathrm{P}\neq\mathrm{NP}$ has great explanatory power.

- 4) Is this a basic problem, like SAT?
- Can we use CLIQ to get other problems not approx?
- Alas NO, I do not know of any such results.

On this slide we assume $P \neq NP$. Some thoughts on the pair of results:

- 1. There exists an alg A such that $A(G) \ge \frac{\log n}{n} \omega(G)$.
- 2. For all $\delta > 0$ there is no alg A with $A(G) \ge \frac{1}{p^{\delta}}\omega(G)$.
- 1) Yeah Very close upper and lower bounds!
- 2) Boo $\frac{(\log n)^{O(1)}}{n}$ -approx still open. Nobody cares.
- 3) Further evidence that $\mathrm{P}\neq\mathrm{NP}$ has great explanatory power.

- 4) Is this a basic problem, like SAT?
- Can we use CLIQ to get other problems not approx?
- Alas NO, I do not know of any such results.
- 5) We now turn to a SAT-like non-approx result.