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Graph Isomorphism
Is Probably Not NPC



Graph Isomorphism: A History

Def Graph Isomorphism (GI) is, given two graphs, are they
isomorphic, denoted G1 ' G2. GI is clearly in NP.

1) Since 1971 people tried hard to prove GI is NPC (There is a
rumor that Levin thought GI is NPC and delayed publishing his
paper since he wanted to include that result).

2) They did not manage it. Informally the reason is that GI is too
rigid. That is, a very slight change in one of the graphs can send
the (G1,G2) from GI to GI, which gets in the way of reductions.
This is not a proof that GI is not NPC!.

3) Over the years the following are shown.
a) Degree or genus of G1,G2 bounded →GI ∈ P.
b) Eigenvalue Mult of G1,G2 bounded → GI ∈ P (Mount’s PhD).

c) GI is in nlog
k n for some k (likely k = 3).

c) → (GI NPC → NP ⊆ DTIME(nlog
O(1) n)).

We show a different reason why GI NPC is unlikely.
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An Interactive Protocol
for GI



Intuition: Why GI is Diff than SAT: SAT

The title is not quite right. It should be

Intuition: Why GI diff from TAUT:TAUT

Alice wants to convince Bob φ ∈ TAUT. How? Discuss.
Alice could give Bob The entire Truth Table For φ.

Can Alice give Bob short proof that φ ∈ TAUT? Discuss.
We do not know; however, we think not.

More precise We do not think TAUT ∈ NP.

Alice wants to convince Bob (G1,G2) ∈ GI. How? Discuss.
GOTO Next Page.
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Intuition: why GI is diff from TAUT:GI

The following would be great but it is not known: GI ∈ NP.

That would contrast TAUT. Alas don’t know if this is true.

Alice wants to convince Bob that (G1,G2) ∈ GI.

We put several twists on Alice sends short verifiable proof.

1) Bob sends Alice a challenge, Alice responds, Bob verifies.
2) Bob flips coins to decide what to send. He verifies in poly.
3) We allow a probability of error.
4) This is IP(2). 2 is for 2 rounds. We won’t define formally.
We show GI ∈ IP(2) on next slide.
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GI is in IP(2)

1) Alice and Bob are both looking at G1,G2 both on n vertices.

2) Bob flips a coin n times get a seq b1 · · · bn.
3) For 1 ≤ i ≤ n Bob rand permutes vertices of Gbi to get Hi .
4) Bob sends H1, . . . ,Hn to Alice. This is a challenge!
(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .
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(G1,G2) ∈ GI → Alice can tell Hi ' Gbi .
(G1,G2) /∈ GI → Alice is clueless. Uninformed guess possible.
5) Alice sends an n bit string c1 · · · cn.
6) b1 · · · bn = c1 · · · cn → Bob accepts, else Bob rejects.
Easy to show
(G1,G2) ∈ GI → Alice can send the correct string.
(G1,G2) /∈ GI → Prob Alice sends the correct string is 1

2n .



An Interactive Protocol
for GI

With Public Coins
Set Up



Private Coins, Public Coins

IP(2) used Private Coins. Alice does not get to see Bob’s coins.
Def A is in Arthur-Merlin (AM) if A ∈ IP(2) but Alice gets to see
Bob’s coin flips. We do not define this formally.

1) Why called Arthur-Merlin? King Arthur gives Merlin a challenge
openly, and Merlin the wizard (all powerful) responds.

2) We will show GI ∈ AM. We then show that this implies
something unlikely happens. We discuss this in more detail later.
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Needed Graph Theory

Notation Henceforth G1,G2 will be the pair of graphs Merlin and
Arthur are looking at, and n will be the number of vertices on
them.

Notation Sn is the set of ALL permutations of {1, . . . , n}. Let
σ ∈ Sn. Then σ(G ) = (V ,E ′) where

E ′ = {(σ(x), σ(y)) : (x , y) ∈ E}.

Def Let G be a graph. An Automorphism is an isomorphism from
G to itself. AUT(G ) is the set of all automorphism. Note
AUT(G ) ⊆ Sn.

Fact (Do examples on whiteboard.)
If σ ∈ Sn then G ' σ(G ).
If σ ∈ AUT(G ) then G = σ(G ).
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How Big is {σ(G) : σ ∈ Sn}?

Consider the set:

{σ(G ) : σ ∈ Sn}

How big is it? Is it n!? No since some of the σ(G ) appear more
than once.

Goto Breakout Rooms and look at some simple graphs and try
to derive it.

Lem |{σ(G ) : σ ∈ Sn}| = n!
AUT(G) .

Proof on next slide.
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|{σ(G) : σ ∈ Sn}| = n!
AUT(G)

Let AUT(G ) = {σ1, σ2, . . . , σm}. The multiset

B = {σ(G ) : σ ∈ Sn}

has n! elements in it: G1, . . . ,Gn!.
Gi = Gj iff (∃τ ∈ AUT(G ) such that τ(Gi ) = Gj .
Key Take G1. It EQUALS all |AUT(G )| graphs in

{τ(G ) : τ ∈ AUT(G )}

Hence every graph appears exactly |AUT(G )| times.
The result follows.
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Three Important Sets

Let G ,G1,G2 be graphs.
1) Y (G ) = {(H, σ) : G ' H ∧ σ ∈ AUT(G )}.

How big is Y (G )? n!
|AUT (G)| choices for H, |AUT (G )| choices for σ.

Hence |Y (G )| = n!.

2) Y (G1,G2) = Y (G1) ∪ Y (G2).

|Y (G1,G2)| =

{
n! if G1 ' G2

2n! if G1 6' G2

(1)

n! vs 2n! is a size diff, but not a big enough one.

3) Let X (G1,G2) = Y (G1,G2)× · · · × Y (G1,G2) (n times).

|X (G1,G2)| =

{
(n!)n if G1 ' G2

2n(n!)n if G1 6' G2

(2)
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Merl Convinces Aut that (H, σ) ∈ Y (G1,G2)
Mini Goal Merlin will later send Authur some (H, σ) and a proof
that (H, σ) ∈ Y (G1,G2).

Merlin’s proof that (H, σ) ∈ Y (G1,G2) Proof is in two parts.

1. A number i ∈ {1, 2}. Merlin is saying that (H, σ) ∈ Yi . ALSO

2. ρ ∈ Sn. Merlin is saying that ρ is an isom of H to Gi .

Given (i , ρ) Author an easily verify that ρ is an isom of H to Gi .
Author can also verify that σ is an auto of G without any help
from Merlin.

Mini Goal Merlin will later send Authur some

(H1, σ1), · · · , (Hn, σn)

and a proof that

(H1, σ1), · · · , (Hn, σn) ∈ X (G1,G2).

Just do the proof for each (Hi , σi ) ∈ Y (G1,G2).
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Restate Merlin’s Goal

G1 ' G2 → |X (G1,G2)| = (n!)n which is small

G1 6' G2 → |X (G1,G2)| = 2n(n!)n which is big

Merlin needs to convince Arthur that X (G1,G2) is big.

How can Merlin convince Arthur that X is big? Discuss
Remember- we are computer scientists!
We can use Hash Functions!

We use same math from the rand reduction of SAT to SAT1.

We’ll get to that later, we have other things to attend to now.
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Representation of Potential Elements of X (G1,G2)

How to represent the elements in X (G1,G2)? How long is that
representation?

1. A graph takes Θ(n2) bits to represent.

2. An automorphism takes Θ(n log n) bits to represent.

3. Every element in Y (G1,G2) takes Θ(n2 + n log n) = Θ(n2)
bits to represent.

4. Every element in X (G1,G2) takes Θ(n(n2)) = Θ(n3) bits to
represent.
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An Interactive Protocol
for GI

With Private Coins:
Hash Functions



Convention about Random Matrices



Recall Lemma

Let k, n ∈ N. Let X ⊆ {0, 1}n. Assume 0n /∈ X .

Consider the following random variable:

Pick a random k × n 0-1 valued matrix M (all arith is mod 2).

S = |{x ∈ X : M(x) = 0k}|.

Output S .
Then

1. E (S) = 2−k |X |
2. Var(S) ≤ 2−k |X |.

Note E (S) and Var(S) do not depends on n, just on k and |X |.
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Set Up Input for Hash Function

Notation

1) N will be the length of the encoding of elements of X (G1,G2).

2) Recall N = Θ(n3).

3) We make sure 0n /∈ X (G1,G2).

4) We pick k later.

5) Rand Var will be: Pick a rand k × N 0-1 matrix M, output

S = |{z ∈ X (G1,G2) : M(z) = 0k}|.
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We pick k such that 2k = (n!)n, so k = Θ(n2 log n).
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If G1 ' G2 then . . .. If G1 6' G2 then . . .

In the protocol Arthur will challenge Merlin to produce n elements
of X (G1,G2).
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Pr(|S − E (S)| ≥ a) <
Var(S)

a2
.
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Final Protocol for
GI ∈ AM



AM Protocol for GI

1. Input(G1,G2). (Mer and Art see this.) N, k as above. Both
poly in n.

2. Art sends Mer a random N × k matrix of 0’s and 1’ M.

3. Mer sends Art z1, . . . , zn ∈ {0, 1}N and (∀i) proof that
zi ∈ X (G1,G2).
Mer intent is to prove to Art that
(∀i)[zi ∈ X (G1,G2) ∧M(zi ) = 0k ].

4. (∀i) Art tries to verify zi ∈ X (G1,G2)∧M(zi ) = 0k . If for any
i either of these fails then output NO. Else output YES.

As shown in prior slide:

G1 ' G2 → Prob Merlin can send z1, . . . , zn is ≤ 1
2n .

G1 6' G2 → Prob Merlin cannot send z1, . . . , zn is ≤ 1
2n .
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GI ∈ AM
So What?



Consequences of GI ∈ AM

Recall that the original goal was to get
If GI is NPC then something unlikely happens

If GI is NPC then, since GI ∈ AM, TAUT ∈ AM.

Does TAUT ∈ AM imply P = NP? No.

Does TAUT ∈ AM imply NP = co-NP? No.

To state what TAUT ∈ AM implies, we need more definitions.
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Reviewing NP

Recall
A ∈ NP if there exists poly p and set B ∈ P such that

A = {x : (∃y , |y | ≤ p(|x |)[(x , y) ∈ B]}.

Notation We use ∃p and ∀p to mean the variable is bounded by
poly in the length of an understood input.

A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.
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Σ1 and Π1
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A ∈ Π1 (also called co-NP) if there exists B ∈ P such that

A = {x : (∀py)[(x , y) ∈ B]}.

Examples
1) TAUT = {φ : (∀x)[φ(x) = T ]}
2) HAMC = {G : (∀ cycles C )[C is not Hamiltonian]}
3) If A is any set in NP then A in in Π1.
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Σ2 and Π2

A ∈ Σ2 (also called Σp
2) if there exists B ∈ P such that

A = {x : (∃py)(∀pz)[(x , y , z) ∈ B]}.

Examples
1) {φ(~x , ~y) : (∃~b)(∀~c)[φ(~b, ~c)]}
2) {φ : φ is the min sized formula for the function φ }
Exercise to put this in Σ2 form.
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1) There are very few natural problems naturally in Σ2 or Π2.
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3) Σ1 ⊆ Σ2 · · · . Thought to be proper.

4) Π1 ⊆ Π2 · · · . Thought to be proper.

5) Σi ⊆ Πi+1. Thought to be proper.
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If GI is NPC then . . .

1) From TAUT ∈ AM can show that Σ3 = Π3.

2) From TAUT ∈ AM can show that Σ2 = Π2 (this takes more
effort).

Most people thing that the poly hierarchy is proper and hence that
Σ2 6= Π2 and hence that GI is not NPC.

I am not going to do these proofs. I have shown you the interesting
algorithmic aspects of the problem, which is enough for this course.
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My Prediction

1. P vs NP will be resolved in the year 2525.

2. We still won’t know the status of GI.
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