BILL AND NATHAN, RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

BILL RECORD LECTURE!!!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Def Let A be a min problem. $A \in LAPX$ if $\exists c$ and alg M: $M(x) \leq (c \log |x|) OPT(x)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def Let A be a min problem. $A \in LAPX$ if $\exists c$ and alg M: $M(x) \leq (c \log |x|) OPT(x)$.

We want to show some problems cannot be approximated any better than $\rm LAPX.$

Def Let A be a min problem. $A \in LAPX$ if $\exists c$ and alg M: $M(x) \leq (c \log |x|)OPT(x)$.

We want to show some problems cannot be approximated any better than $\rm LAPX.$

Need to define what we mean.

Def A is in **LPTAS** if there is an alg that, on input (x, ϵ) outputs x such that $M(x) \le (\epsilon \log |x|) OPT(x)$.

Def A is in **LPTAS** if there is an alg that, on input (x, ϵ) outputs x such that $M(x) \le (\epsilon \log |x|) OPT(x)$.

Recall

When we wanted to show some problems **did not have a PTAS** we first needed **one** problem that did not have a PTAS: MAX3SAT. We then used reductions.

Def A is in **LPTAS** if there is an alg that, on input (x, ϵ) outputs x such that $M(x) \le (\epsilon \log |x|) OPT(x)$.

Recall

When we wanted to show some problems **did not have a PTAS** we first needed **one** problem that did not have a PTAS: MAX3SAT. We then used reductions.

Now We want to show some problems **do not have LPTAS**. We first need **one** problem that does not have an LPTAS: SETCOVER.

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

- 1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.
- 2. Dinur and Steurer in 2013 showed that, assuming $P \neq NP$, for all ϵ there is no $(1 \epsilon) \ln n \times OPTIMAL$ approx alg for Set Cover (When $m \sim n^{0.8}$.)

ション ふぼう メリン メリン しょうくしゃ

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

- 1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.
- 2. Dinur and Steurer in 2013 showed that, assuming $P \neq NP$, for all ϵ there is no $(1 \epsilon) \ln n \times OPTIMAL$ approx alg for Set Cover (When $m \sim n^{0.8}$.)

(1) Bound is surprisingly tight. Not $\Theta(\log n)$, Actually In n.

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

- 1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.
- 2. Dinur and Steurer in 2013 showed that, assuming $P \neq NP$, for all ϵ there is no $(1 \epsilon) \ln n \times OPTIMAL$ approx alg for Set Cover (When $m \sim n^{0.8}$.)

(1) Bound is surprisingly tight. Not $\Theta(\log n)$, Actually In *n*. (2) Dinur and Steurer showed SETCOVER is not LPTAS (earlier results did that).

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

- 1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.
- 2. Dinur and Steurer in 2013 showed that, assuming $P \neq NP$, for all ϵ there is no $(1 \epsilon) \ln n \times OPTIMAL$ approx alg for Set Cover (When $m \sim n^{0.8}$.)

(1) Bound is surprisingly tight. Not $\Theta(\log n)$, Actually In *n*. (2) Dinur and Steurer showed SETCOVER is not LPTAS (earlier results did that).

(2) Assuming this result we obtain other problems not in LPTAS.

Set Cover Given *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ find the least number of sets S_i 's that cover $\{1, \ldots, n\}$.

- 1. Chvatal in 1979 showed that there is a poly time approx algorithm for **Set Cover** that will return $(\ln n) \times \text{OPTIMAL}$.
- 2. Dinur and Steurer in 2013 showed that, assuming $P \neq NP$, for all ϵ there is no $(1 \epsilon) \ln n \times OPTIMAL$ approx alg for Set Cover (When $m \sim n^{0.8}$.)

(1) Bound is surprisingly tight. Not $\Theta(\log n)$, Actually In *n*. (2) Dinur and Steurer showed SETCOVER is not LPTAS (earlier results did that).

(2) Assuming this result we obtain other problems not in LPTAS.

(4) We define LAPX-complete with this in mind.

Def of LAPX-Complete

Def *A* is LAPX-complete if

Def of LAPX-Complete

Def *A* is LAPX-complete if 1. *A* is in LAPX.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def of LAPX-Complete

Def A is LAPX-complete if

- 1. A is in LAPX.
- SETCOVER ≤ A with an APR (Approximation-Preserving-Reduction).

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

DOM is LAPX-Complete

▲□▶▲□▶★国▶★国▶ ■ のへで

DOM is in LAPX

DOM is in LAPX A greedy algorithm where you always take the vertex of max degree yields a $(\ln \Delta + 2)$ -approximation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

DOM is in LAPX A greedy algorithm where you always take the vertex of max degree yields a $(\ln \Delta + 2)$ -approximation.

Next slide we show we show $SETCOVER \leq DOM$.

1. Input *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$. Let $U = \{1, \ldots, n\}$.

1. Input *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$. Let $U = \{1, \ldots, n\}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. Form a graph G = (V, E) as follows:

1. Input *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$. Let $U = \{1, \ldots, n\}$. 2. Form a graph G = (V, E) as follows:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

(1) $V = \{1, \dots, n\} \cup \{S_1, \dots, S_m\}.$

1. Input *n* and $S_1, ..., S_m \subseteq \{1, ..., n\}$. Let $U = \{1, ..., n\}$.

- 2. Form a graph G = (V, E) as follows:
 - (1) $V = \{1, \ldots, n\} \cup \{S_1, \ldots, S_m\}.$
 - (2) Between every two S_i 's is an edge.

1. Input *n* and $S_1, ..., S_m \subseteq \{1, ..., n\}$. Let $U = \{1, ..., n\}$.

- 2. Form a graph G = (V, E) as follows:
 - (1) $V = \{1, \ldots, n\} \cup \{S_1, \ldots, S_m\}.$
 - (2) Between every two S_i 's is an edge.
 - (3) If $i \in S_j$ then have edge (i, S_j) .

1. Input *n* and
$$S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$$
. Let $U = \{1, \ldots, n\}$.
2. Form a graph $G = (V, E)$ as follows:
(1) $V = \{1, \ldots, n\} \cup \{S_1, \ldots, S_m\}$.
(2) Between every two S_i 's is an edge.
(3) If $i \in S_j$ then have edge (i, S_j) .
Let $U = \{1, \ldots, n\}$ and $S = \{S_1, \ldots, S_m\}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Input *n* and *S*₁,..., *S_m* ⊆ {1,..., *n*}. Let *U* = {1,..., *n*}.
 Form a graph *G* = (*V*, *E*) as follows:

 V = {1,..., *n*} ∪ {*S*₁,..., *S_m*}.
 Between every two *S_i*'s is an edge.
 If *i* ∈ *S_j* then have edge (*i*, *S_j*).

 Let *U* = {1,..., *n*} and *S* = {*S*₁,..., *S_m*}.
 Let *D* be a dominating set for *G*.

If there are any U-vertices in D then replace them by the S-vertex they connect to. Can assume that every dominating set consists only of S-vertices.

1. Input *n* and $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$. Let $U = \{1, \ldots, n\}$. 2. Form a graph G = (V, E) as follows: (1) $V = \{1, \ldots, n\} \cup \{S_1, \ldots, S_m\}$. (2) Between every two S_i 's is an edge. (3) If $i \in S_j$ then have edge (i, S_j) . Let $U = \{1, \ldots, n\}$ and $S = \{S_1, \ldots, S_m\}$.

Let D be a dominating set for G.

If there are any U-vertices in D then replace them by the S-vertex they connect to. Can assume that every dominating set consists only of S-vertices.

We map a dominating set to the *S*-sets that its *S*-vertices correspond to. The size of the dominating set is exactly the size of a covering.

List of LAPX-Complete Problems

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We will list several problems that are LAPX-complete.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

We will list several problems that are LAPX-complete. We omit both the algorithms and the reductions.

(ロト (個) (E) (E) (E) (E) のへの

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from SETCOVER.

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from SETCOVER.

A contrast:

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from SETCOVER.

A contrast:

▶ For NPC we often use problems other than SAT.

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from SETCOVER.

A contrast:

- ► For NPC we often use problems other than SAT.
- For APX-complete we often use problems other than MAX3SAT.

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from SETCOVER.

A contrast:

- ► For NPC we often use problems other than SAT.
- For APX-complete we often use problems other than MAX3SAT.
- For LAPX-complete we seem to only use SETCOVER. This may be because there are far fewer LAPX probems.

Motion Planning Problem

Def The Motion Planning Problem is as follows.

Input A graph G = (V, E) with the vertex set split into two (possibly overlapping) sets V_1 , V_2 of the same size. The set V_1 are called *tokens* and each one has a *robot* on it. A **move** is when a robot goes on a path with no other robots on it. Note that a robot may go quite far in one move.

Motion Planning Problem

Def The Motion Planning Problem is as follows.

Input A graph G = (V, E) with the vertex set split into two (possibly overlapping) sets V_1 , V_2 of the same size. The set V_1 are called *tokens* and each one has a *robot* on it. A **move** is when a robot goes on a path with no other robots on it. Note that a robot may go quite far in one move.

Question We want a final configuration where all the robots are on the vertices in V_2 (only one robot can fit on a vertex). We want to do this in the minimum number of moves. What is that min?

Input Graph G = (V, E) with weights on its nodes, a terminal nodes $T \subseteq V$, and a node $r \in V$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Input Graph G = (V, E) with weights on its nodes, a terminal nodes $T \subseteq V$, and a node $r \in V$. **Question** We want a set of nodes *S* of such that

Input Graph G = (V, E) with weights on its nodes, a terminal nodes $T \subseteq V$, and a node $r \in V$.

Question We want a set of nodes S of such that

1. The graph induced by $T \cup S$ connects all terminal nodes to r,

Input Graph G = (V, E) with weights on its nodes, a terminal nodes $T \subseteq V$, and a node $r \in V$.

Question We want a set of nodes S of such that

1. The graph induced by $T \cup S$ connects all terminal nodes to r,

2. the sum of the weights in S is minimal over all such S.

Input A graph G = (V, E) with weights on its edges, sets $V_1, \ldots, V_k \subseteq V$, and a node $r \in V$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Input A graph G = (V, E) with weights on its edges, sets $V_1, \ldots, V_k \subseteq V$, and a node $r \in V$.

Question We want a set of nodes *S* of such that

Input A graph G = (V, E) with weights on its edges, sets $V_1, \ldots, V_k \subseteq V$, and a node $r \in V$.

Question We want a set of nodes *S* of such that

1. Graph induced by $T \cup S$ connects some vertex of each V_i to r,

Input A graph G = (V, E) with weights on its edges, sets $V_1, \ldots, V_k \subseteq V$, and a node $r \in V$.

Question We want a set of nodes S of such that

1. Graph induced by $T \cup S$ connects some vertex of each V_i to r,

2. sum of the weights in T is minimal over all such T.