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LAPX



Def of LAPX

Def Let A be a min problem. A ∈ LAPX if ∃ c and alg M:
M(x) ≤ (c log |x |)OPT(x).

We want to show some problems cannot be approximated any
better than LAPX.

Need to define what we mean.
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we first needed one problem that did not have a PTAS:
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Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P 6= NP,
for all ε there is no (1− ε) ln n ×OPTIMAL approx alg for
Set Cover (When m ∼ n0.8.)

(1) Bound is surprisingly tight. Not Θ(log n), Actually ln n.
(2) Dinur and Steurer showed SETCOVER is not LPTAS (earlier
results did that).
(2) Assuming this result we obtain other problems not in LPTAS.
(4) We define LAPX-complete with this in mind.
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SETCOVER ≤ DOM

1. Input n and S1, . . . ,Sm ⊆ {1, . . . , n}. Let U = {1, . . . , n}.
2. Form a graph G = (V ,E ) as follows:

(1) V = {1, . . . , n} ∪ {S1, . . . ,Sm}.
(2) Between every two Si ’s is an edge.
(3) If i ∈ Sj then have edge (i ,Sj).

Let U = {1, . . . , n} and S = {S1, . . . ,Sm}.
Let D be a dominating set for G .

If there are any U-vertices in D then replace them by the S-vertex
they connect to. Can assume that every dominating set consists
only of S-vertices.

We map a dominating set to the S-sets that its S-vertices
correspond to. The size of the dominating set is exactly the size of
a covering.
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List of LAPX-Complete
Problems



About the Reductions

We will list several problems that are LAPX-complete.

We omit both the algorithms and the reductions.

For all of the problem we present the reduction was from
SETCOVER.

A contrast:

I For NPC we often use problems other than SAT.

I For APX-complete we often use problems other than
MAX3SAT.

I For LAPX-complete we seem to only use SETCOVER. This
may be because there are far fewer LAPX probems.
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Motion Planning Problem

Def The Motion Planning Problem is as follows.
Input A graph G = (V ,E ) with the vertex set split into two
(possibly overlapping) sets V1,V2 of the same size. The set V1 are
called tokens and each one has a robot on it. A move is when a
robot goes on a path with no other robots on it. Note that a robot
may go quite far in one move.

Question We want a final configuration where all the robots are
on the vertices in V2 (only one robot can fit on a vertex). We want
to do this in the minimum number of moves. What is that min?
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Node Weighted Steiner Tree

Input Graph G = (V ,E ) with weights on its nodes, a terminal
nodes T ⊆ V , and a node r ∈ V .

Question We want a set of nodes S of such that

1. The graph induced by T ∪ S connects all terminal nodes to r ,

2. the sum of the weights in S is minimal over all such S .
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Input A graph G = (V ,E ) with weights on its edges, sets
V1, . . . ,Vk ⊆ V , and a node r ∈ V .
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1. Graph induced by T ∪ S connects some vertex of each Vi to r ,

2. sum of the weights in T is minimal over all such T .
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