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We Assume · · ·

In this section we assume P 6= NP.

If we say
The Hokey Pokey cannot be approx better than BLAH

We mean
If can approx The Hokey Pokey better than BLAH then P = NP

If we say Alg A we mean Poly time Alg A.

If we say rand Alg A we mean Randomized Poly time Alg A.
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1. Input φ = C1 ∧ · · · ∧ Cm, each Ci is a ∨ of 3 literals.

2. Output The max number of clauses that can be satisfied.

Is there a δ < 1 and an alg A such that

A(φ) ≥ (1− δ)MAX3SAT(φ)

Yes.
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Approx for MAX3SAT

Thm (∃) rand alg A st A(φ) ≥ 7
8MAX3SAT(φ).

1. Input φ = C1 ∧ · · · ∧ Cm.

2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let C be a clause. The prob that C is satisfied is 7
8 .

By Lin of ExpV, expected number of Ci satisfied is 7m
8 .

Note that MAX3SAT ≤ m.

Hence A(φ) ≥ 7
8MAX3SAT(φ).

Note This rand alg can be made det by method of cond prob.
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Approx for Variants of MAX3SAT

1. If (∀i)[|Ci | = 3] then have easy rand alg returns
≥ 7

8MAX3SAT(φ).

2. If (∀i)[|Ci | = 3] then have medium det alg returns
≥ 7

8MAX3SAT(φ).

3. If (∀i)[|Ci | ≤ 3] then have easy rand alg returns
≥ 1

2MAX3SAT(φ).

4. If (∀i)[|Ci | ≤ 3] then have medium det alg returns
≥ 1

2MAX3SAT(φ).

5. If (∀i)[|Ci | ≤ 3] then have hard rand alg returns
≥ 7

8MAX3SAT(φ).

People tried to get an app-alg to return ≥ (78 + ε)MAX3SAT(φ).
Did they succeed? No. Now What?
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There is a Limit To How Well You Can Approx

We will show there is some δ < 1
8 such that there is NO app-alg

that returns

≥ (1− δ)MAX3SAT(φ).

Hence cannot keep getting better and better approx.

Consequence ∃ε < 1
8 , ¬∃ alg A, A(φ) ≥ (78 + ε)MAX3SAT(φ).

The value of ε is buried in the machinery of PCP though it could
be determined.

Likely end up with something like:
There is no Alg A such that

A(φ) ≥ 1040 − 1

1040
MAX3SAT(φ).

(An alg that does better and better is a Poly Time Approx
Scheme(PTAS). We show there is no PTAS for MAX3SAT.)
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Better Lower Bounds Are Known

Thm
∀ε > 0, ¬∃ alg A, A(φ) ≥ (78 + ε)MAX3SAT(φ).

So can’t even do a wee bit better,

If Erika says she has an alg that returns ≥ (78 + 1
1040

)MAX3SAT(φ)
then either (a) Erika has proven P = NP or (b) Erika is mistaken.

Yet another example of the explanatory power of P 6= NP

Note that

1. The rand and poly app-algs that got 7
8MAX3SAT(φ) are easy.

2. The lower bound uses PCP machinery.

3. The alg and the lower bounds have nothing to do with each
other and yet yield matching upper and lower bounds at 7

8 .
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Turning PCP’s into Formulas

Recall Let A ∈ NP and ε > 0. Then ∃q, d ∈ N such that
A ∈ PCP(q, d lg n, ε).

Let x ∈ {0, 1}n. This is the input to the PCP.
We form a Boolean formula as follows.
The Vars For every τσ ∈ {0, 1}d lg n+q one can run the PCP with
random string τ and bit-answers σ. From these simulations you
can find all possible bit-queries. There are ≤ 2d lg n+q = 2qnd bit
queries. These will be variables.

Parts of the Formula For every τ ∈ {0, 1}d lg n we form ψτ .
Use τ as the random string. Simulate all possible query paths to
find the relevant vars.
ψτ is the formula on those vars that is TRUE exactly when that
setting of the variables makes this path accept.
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A Very Small Example

Imagine the following.

Using τ = 1101 the PCP will query bit 17.
If bit 17 is 1 then query bit 84. If bit 17 is 0 then query bit 5.
If bit 17 is 1 and then bit 84 is 1 then accept.
If bit 17 is 0 and then bit 5 is 0 then accept.
All else reject.
ψ1101 = (q17 ∧ q84) ∨ (¬q17 ∧ ¬q5).
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Max Number of Clauses

In general case we will turn ψτ into a 3CNF.

We do not have any control over how many clauses ψτ will have.

But we do know that it uses ≤ 2q variables.

Def C (q) is max numb of clauses a 3CNF fml on 2q vars has.

Note Since q is a constant, C (q) is a constant.

We will use C (q) later.
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Final Formula

Let A ∈ NP and ε > 0. Then ∃q, d ∈ N
Let A ∈ PCP(q, d lg n, ε).

Let x ∈ {0, 1}n. This is the input to the PCP.
We have said how to take τ ∈ {0, 1}d lg n and form ψτ .

1. ψτ is on ≤ 2q vars, a constant. Rewrite ψτ as a 3CNF.

2. ψτ has ≤ C (q) clauses. Add clauses of the form (x ∨ x ∨ x)
with new vars x to get exactly C (q) clauses.

3. Let ψx be the
∧

of all the ψτ .

4. Note that ψx is 3CNF.

5. ψx has 2d lg nC (q) = ndC (q) clauses.

6. Note that ψx is in 3CNF Form and has C (q)nd clauses.

Going from x to ψx takes time poly in |x | = n.
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MAX3SAT is Not PTAS: Set Up

Assume BWOC (∀δ < 1) MAX3SAT is (1− δ)-approximable.

We pick δ later. It will matter.

We call the approx algorithm that achieves this app-alg.

Let A ∈ NP. We pick ε later. It won’t matter.

By PCP Thm (∃d , q ∈ N)[A ∈ PCP(q, d lg n, ε)].

If we run the PCP with oracle y we say PCPy .

We use app-alg and the PCP to obtain A ∈ P.
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MAX3SAT is Not PTAS: A in P Algorithm

1. Input x .

2. Form the 3CNF formula ψx .

3. Apply the approx to ψx .

4. We will pick ε, δ such that there is a gap between what the
approx yields if x ∈ A and if x /∈ A. Details on next “few”
slides.

We will then finish the algorithm.
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MAX3SAT is Not PTAS: x ∈ A Case

Assume x ∈ A.

Then there is an oracle y so that, for all τ , the PCP, with τ , and
using y for answers, accepts.

Formally

(∃y)(∀τ ∈ {0, 1}d lg n)[PCPy (x , τ) ACCEPTS].

Hence there is a way to satisfy all ndC (q) clauses of ψτ simul.
So OPT(ψx) = ndC (q).
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If x /∈ A How Many Clauses Satisfied?

Let y be the oracle (Truth Assignment) that yields OPT(ψx)

ψx =
∧
ψτ

Recall Each ψx has exactly C (q) clauses.

At most ε of the τ ’s are satisfied.
Worst case For φτ /∈ SAT, OPT(φτ ) = C (q)− 1.

So Number of clauses satisfied is

εndC (q) + (1− ε)nd(C (q)− 1) = nd(εC (q) + (1− ε)(C (q)− 1))

= nd(εC (q) + C (q)− εC (q)− 1 + ε) = nd(C (q)− 1 + ε)
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Apply Approx and See What Happens

x ∈ A MAX3SAT(ψx) = ndC (q), app-alg ≥ (1− δ)ndC (q).

x /∈ A MAX3SAT(ψx) ≤ nd(C (q)− 1 + ε), so app-alg
≤ nd(C (q)− 1 + ε).

For Gap Need

nd(C (q)− 1 + ε) < (1− δ)ndC (q)

δ <
1− ε
C (q)
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We Won’t Pick ε Cleverly

For Gap Need

δ <
1− ε
C (q)

We want to maximize δ.

The smaller ε is, the bigger q is, so the bigger C (q) is.

If we knew how all of these related we would pick ε carefully to
maximize 1−ε

C(q) .

We don’t.

But all we want is there is some δ so we can show MAX3SAT has
no PTAS.

We pick ε = 1
4 , but still call it ε.

We pick δ = 1−ε
2C(q) .
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MAX3SAT is Not PTAS: A in P Algorithm

Let ε = 1
4 . Let q, d be such that A ∈ PCP(q, d lg n, ε).

Let C (q) be as discussed above.

Let δ = 1−ε
2C(q) .

We show there is no (1− δ)-approx for MAX3SAT.
Assume, BWOC, that there is such a app-alg. We use the app-alg,
and the PCP, to get A ∈ P.

1. Input x .

2. Form the 3CNF formula ψx . Let X be the number of clauses.

3. Apply the approx to ψx . Call the result Y .

4. If Y ≥ (1− δ)ndC (q) then output YES, x ∈ A.

5. If Y ≤ nd(C (q)− 1 + ε) then output NO, x /∈ A.

By the commentary in the last few slides, and the choice of δ,
exactly one of the inequalities for Y holds.
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