BILL AND NATHAN, RECORD LECTURE!!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

BILL RECORD LECTURE!!!

Upper and Lower Bounds (PCP) on Approx For MAX3SAT

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

In this section we assume $P \neq NP$.

In this section we assume $P \neq NP$.

If we say

The Hokey Pokey cannot be approx better than BLAH

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In this section we assume $P \neq NP$.

If we say

The Hokey Pokey cannot be approx better than BLAH We mean If can approx The Hokey Pokey better than BLAH then P = NP

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

In this section we assume $P \neq NP$.

If we say

The Hokey Pokey cannot be approx better than BLAH We mean If can approx The Hokey Pokey better than BLAH then P = NP

If we say Alg A we mean Poly time Alg A.

In this section we assume $P \neq NP$.

If we say

The Hokey Pokey cannot be approx better than BLAH We mean If can approx The Hokey Pokey better than BLAH then P = NP

If we say Alg A we mean Poly time Alg A. If we say rand Alg A we mean Randomized Poly time Alg A.

うつん ぼ くぼとくぼとく 雪 うんの

MAX3SAT

1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

MAX3SAT

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.
- 2. **Output** The max number of clauses that can be satisfied.

MAX3SAT

1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.

2. **Output** The max number of clauses that can be satisfied.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Is there a $\delta < 1$ and an alg A such that

MAX3SAT

1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.

2. **Output** The max number of clauses that can be satisfied.

Is there a $\delta < 1$ and an alg A such that

 $A(\phi) \ge (1 - \delta) MAX3SAT(\phi)$

MAX3SAT

1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.

2. Output The max number of clauses that can be satisfied. Is there a $\delta < 1$ and an alg A such that

$$A(\phi) \ge (1 - \delta) MAX3SAT(\phi)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Yes.

MAX3SAT

1. Input $\phi = C_1 \wedge \cdots \wedge C_m$, each C_i is a \vee of 3 literals.

2. Output The max number of clauses that can be satisfied. Is there a $\delta < 1$ and an alg A such that

$$A(\phi) \ge (1 - \delta) MAX3SAT(\phi)$$

Yes.

Next Slide

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ). 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

1. Input
$$\phi = C_1 \wedge \cdots \wedge C_m$$

2. Assign each var T or F at Random.

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy!

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

ション ふゆ アメビア メロア しょうくしゃ

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let C be a clause. The prob that C is satisfied is $\frac{7}{8}$.

ション ふゆ アメビア メロア しょうくしゃ

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let C be a clause. The prob that C is satisfied is $\frac{7}{8}$. By Lin of ExpV, expected number of C_i satisfied is $\frac{7m}{8}$.

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let C be a clause. The prob that C is satisfied is $\frac{7}{8}$. By Lin of ExpV, expected number of C_i satisfied is $\frac{7m}{8}$. Note that MAX3SAT $\leq m$.

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let *C* be a clause. The prob that *C* is satisfied is $\frac{7}{8}$. By Lin of ExpV, expected number of *C_i* satisfied is $\frac{7m}{8}$. Note that MAX3SAT $\leq m$. Hence $A(\phi) \geq \frac{7}{8}$ MAX3SAT (ϕ) .

Thm (\exists) rand alg A st $A(\phi) \geq \frac{7}{8}$ MAX3SAT(ϕ).

- 1. Input $\phi = C_1 \wedge \cdots \wedge C_m$.
- 2. Assign each var T or F at Random.

Its just that easy! Why does this work?

Let *C* be a clause. The prob that *C* is satisfied is $\frac{7}{8}$. By Lin of ExpV, expected number of *C_i* satisfied is $\frac{7m}{8}$. Note that MAX3SAT $\leq m$. Hence $A(\phi) \geq \frac{7}{8}$ MAX3SAT (ϕ) .

Note This rand alg can be made det by method of cond prob.

▲ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト ○臣 ○ の Q @

1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have **easy** rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .

ション ふゆ アメビア メロア しょうくしゃ

- 1. If $(\forall i)[|C_i| = 3]$ then have easy rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .

- 1. If $(\forall i)[|C_i| = 3]$ then have easy rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 5. If $(\forall i)[|C_i| \leq 3]$ then have hard rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 5. If $(\forall i)[|C_i| \leq 3]$ then have hard rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

People tried to get an app-alg to return $\geq (\frac{7}{8} + \epsilon) MAX3SAT(\phi)$.

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 5. If $(\forall i)[|C_i| \leq 3]$ then have hard rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

People tried to get an app-alg to return $\geq (\frac{7}{8} + \epsilon)MAX3SAT(\phi)$. Did they succeed?

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 5. If $(\forall i)[|C_i| \leq 3]$ then have hard rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

People tried to get an app-alg to return $\geq (\frac{7}{8} + \epsilon)MAX3SAT(\phi)$. Did they succeed? No.

- 1. If $(\forall i)[|C_i| = 3]$ then have **easy** rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 2. If $(\forall i)[|C_i| = 3]$ then have medium det alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .
- 3. If $(\forall i)[|C_i| \leq 3]$ then have easy rand alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 4. If $(\forall i)[|C_i| \leq 3]$ then have medium det alg returns $\geq \frac{1}{2}$ MAX3SAT (ϕ) .
- 5. If $(\forall i)[|C_i| \leq 3]$ then have hard rand alg returns $\geq \frac{7}{8}$ MAX3SAT (ϕ) .

People tried to get an app-alg to return $\geq (\frac{7}{8} + \epsilon)MAX3SAT(\phi)$. Did they succeed? No. Now What?

There is a Limit To How Well You Can Approx

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

There is a Limit To How Well You Can Approx

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT(ϕ).

Hence cannot keep getting better and better approx.
We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT(ϕ).

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

The value of ϵ is buried in the machinery of PCP though it could be determined.

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

The value of ϵ is buried in the machinery of PCP though it could be determined.

Likely end up with something like:

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

The value of ϵ is buried in the machinery of PCP though it could be determined.

Likely end up with something like: There is **no Alg** A such that

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

The value of ϵ is buried in the machinery of PCP though it could be determined.

Likely end up with something like: There is **no Alg** A such that

$$A(\phi) \ge rac{10^{40} - 1}{10^{40}} \mathrm{MAX3SAT}(\phi).$$

We will show there is some $\delta < \frac{1}{8}$ such that there is NO app-alg that returns

 $\geq (1 - \delta)$ MAX3SAT (ϕ) .

Hence cannot keep getting better and better approx.

Consequence $\exists \epsilon < \frac{1}{8}, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

The value of ϵ is buried in the machinery of PCP though it could be determined.

Likely end up with something like: There is **no Alg** *A* such that

$$A(\phi) \ge \frac{10^{40} - 1}{10^{40}} MAX3SAT(\phi).$$

(An alg that does better and better is a **Poly Time Approx Scheme(PTAS)**. We show there is no PTAS for MAX3SAT.)

Thm

 $\forall \epsilon > 0, \neg \exists alg A, A(\phi) \ge (\frac{7}{8} + \epsilon) MAX3SAT(\phi).$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Thm

 $\forall \epsilon > 0, \neg \exists \text{ alg } A, A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \geq (\tfrac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$

So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})$ MAX3SAT(ϕ) then either

ション ふぼう メリン メリン しょうくしゃ

Thm

 $\forall \epsilon > 0, \neg \exists \text{ alg } A, A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or

ション ふぼう メリン メリン しょうくしゃ

Thm

 $\forall \epsilon > 0, \neg \exists \text{ alg } A, A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

ション ふぼう メリン メリン しょうくしゃ

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

ション ふぼう メリン メリン しょうくしゃ

Yet another example of the explanatory power of $\mathbf{P} \neq \mathbf{NP}$

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

ション ふぼう メリン メリン しょうくしゃ

Yet another example of the explanatory power of $\mathbf{P} \neq \mathbf{NP}$

Note that

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

Yet another example of the explanatory power of $\mathbf{P} \neq \mathbf{NP}$

Note that

1. The rand and poly app-algs that got $\frac{7}{8}$ MAX3SAT(ϕ) are easy.

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

Yet another example of the explanatory power of $\mathbf{P} \neq \mathbf{NP}$

Note that

1. The rand and poly app-algs that got $\frac{7}{8}$ MAX3SAT(ϕ) are easy.

2. The lower bound uses PCP machinery.

Thm

 $\forall \epsilon > 0, \ \neg \exists \text{ alg } A, \ A(\phi) \ge (\frac{7}{8} + \epsilon) \text{MAX3SAT}(\phi).$ So can't even do a wee bit better,

If Erika says she has an alg that returns $\geq (\frac{7}{8} + \frac{1}{10^{40}})MAX3SAT(\phi)$ then either (a) Erika has proven P = NP or (b) Erika is mistaken.

Yet another example of the explanatory power of $\mathbf{P} \neq \mathbf{NP}$

Note that

- 1. The rand and poly app-algs that got $\frac{7}{8}$ MAX3SAT(ϕ) are easy.
- 2. The lower bound uses PCP machinery.
- 3. The alg and the lower bounds have nothing to do with each other and yet yield matching upper and lower bounds at $\frac{7}{8}$.

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We form a Boolean formula as follows.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We form a Boolean formula as follows. **The Vars** For every $\tau \sigma \in \{0, 1\}^{d \lg n+q}$ one can run the PCP with random string τ and bit-answers σ . From these simulations you can find all possible bit-queries. There are $\leq 2^{d \lg n+q} = 2^q n^d$ bit queries. These will be variables.

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We form a Boolean formula as follows. **The Vars** For every $\tau \sigma \in \{0, 1\}^{d \lg n+q}$ one can run the PCP with random string τ and bit-answers σ . From these simulations you can find all possible bit-queries. There are $\leq 2^{d \lg n+q} = 2^q n^d$ bit queries. These will be variables.

Parts of the Formula For every $\tau \in \{0,1\}^{d \lg n}$ we form ψ_{τ} .

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We form a Boolean formula as follows. **The Vars** For every $\tau \sigma \in \{0, 1\}^{d \lg n+q}$ one can run the PCP with random string τ and bit-answers σ . From these simulations you can find all possible bit-queries. There are $\leq 2^{d \lg n+q} = 2^q n^d$ bit queries. These will be variables.

Parts of the Formula For every $\tau \in \{0,1\}^{d \lg n}$ we form ψ_{τ} . Use τ as the random string. Simulate all possible query paths to find the relevant vars.

Recall Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ such that $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We form a Boolean formula as follows. **The Vars** For every $\tau \sigma \in \{0, 1\}^{d \lg n+q}$ one can run the PCP with random string τ and bit-answers σ . From these simulations you can find all possible bit-queries. There are $\leq 2^{d \lg n+q} = 2^q n^d$ bit queries. These will be variables.

Parts of the Formula For every $\tau \in \{0,1\}^{d \lg n}$ we form ψ_{τ} . Use τ as the random string. Simulate all possible query paths to find the relevant vars.

 ψ_τ is the formula on those vars that is TRUE exactly when that setting of the variables makes this path accept.

Imagine the following.

Imagine the following. Using $\tau = 1101$ the PCP will query bit 17.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Imagine the following. Using $\tau = 1101$ the PCP will query bit 17. If bit 17 is 1 then query bit 84. If bit 17 is 0 then query bit 5.

Imagine the following. Using $\tau = 1101$ the PCP will query bit 17. If bit 17 is 1 then query bit 84. If bit 17 is 0 then query bit 5. If bit 17 is 1 and then bit 84 is 1 then accept. If bit 17 is 0 and then bit 5 is 0 then accept. All else reject.

Imagine the following.

Using $\tau = 1101$ the PCP will query bit 17.

If bit 17 is 1 then query bit 84. If bit 17 is 0 then query bit 5.

If bit 17 is 1 and then bit 84 is 1 then accept.

If bit 17 is 0 and then bit 5 is 0 then accept.

All else reject.

$$\psi_{1101} = (q_{17} \land q_{84}) \lor (\neg q_{17} \land \neg q_5).$$

Max Number of Clauses

In general case we will turn ψ_{τ} into a 3CNF.

We do not have any control over how many clauses ψ_τ will have.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

In general case we will turn ψ_{τ} into a 3CNF. We do not have any control over how many clauses ψ_{τ} will have. But we do know that it uses $\leq 2^{q}$ variables.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We do not have any control over how many clauses ψ_{τ} will have. But we do know that it uses $\leq 2^q$ variables.

Def C(q) is max numb of clauses a 3CNF fml on 2^q vars has.

We do not have any control over how many clauses ψ_{τ} will have. But we do know that it uses $\leq 2^q$ variables.

Def C(q) is max numb of clauses a 3CNF fml on 2^q vars has. **Note** Since q is a constant, C(q) is a constant.

We do not have any control over how many clauses ψ_{τ} will have. But we do know that it uses $\leq 2^q$ variables.

Def C(q) is max numb of clauses a 3CNF fml on 2^q vars has. **Note** Since q is a constant, C(q) is a constant. We will use C(q) later.

Final Formula

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$.

Final Formula

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで
Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} . 1. ψ_{τ} is on $\leq 2^q$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.

ション ふゆ アメビア メロア しょうくしゃ

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.

ション ふゆ アメビア メロア しょうくしゃ

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.

3. Let ψ_x be the \bigwedge of all the ψ_τ .

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.

- 3. Let ψ_x be the \bigwedge of all the ψ_τ .
- 4. Note that ψ_{χ} is 3CNF.

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.

- 3. Let ψ_x be the \bigwedge of all the ψ_τ .
- 4. Note that ψ_x is 3CNF.
- 5. ψ_x has $2^{d \lg n} C(q) = n^d C(q)$ clauses.

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.
- 3. Let ψ_x be the \bigwedge of all the ψ_τ .
- 4. Note that ψ_x is 3CNF.
- 5. ψ_x has $2^{d \lg n} C(q) = n^d C(q)$ clauses.
- 6. Note that ψ_x is in 3CNF Form and has $C(q)n^d$ clauses.

Let $A \in NP$ and $\epsilon > 0$. Then $\exists q, d \in \mathbb{N}$ Let $A \in PCP(q, d \lg n, \epsilon)$. Let $x \in \{0, 1\}^n$. This is the input to the PCP. We have said how to take $\tau \in \{0, 1\}^{d \lg n}$ and form ψ_{τ} .

- 1. ψ_{τ} is on $\leq 2^{q}$ vars, a constant. Rewrite ψ_{τ} as a 3CNF.
- 2. ψ_{τ} has $\leq C(q)$ clauses. Add clauses of the form $(x \lor x \lor x)$ with new vars x to get exactly C(q) clauses.
- 3. Let ψ_x be the \bigwedge of all the ψ_τ .
- 4. Note that ψ_x is 3CNF.
- 5. ψ_x has $2^{d \lg n} C(q) = n^d C(q)$ clauses.
- 6. Note that ψ_x is in 3CNF Form and has $C(q)n^d$ clauses.

Going from x to ψ_x takes time poly in |x| = n.

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter. We call the approx algorithm that achieves this app-alg.

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter.

We call the approx algorithm that achieves this **app-alg**.

Let $A \in NP$. We pick ϵ later. It won't matter.

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter.

We call the approx algorithm that achieves this **app-alg**.

Let $A \in NP$. We pick ϵ later. It won't matter. By PCP Thm $(\exists d, q \in \mathbb{N})[A \in PCP(q, d \lg n, \epsilon)]$.

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter.

We call the approx algorithm that achieves this **app-alg**.

Let $A \in NP$. We pick ϵ later. It won't matter. By PCP Thm $(\exists d, q \in \mathbb{N})[A \in PCP(q, d \lg n, \epsilon)]$.

If we run the PCP with oracle y we say **PCP**^y.

Assume BWOC ($\forall \delta < 1$) MAX3SAT is $(1 - \delta)$ -approximable. We pick δ later. It will matter.

We call the approx algorithm that achieves this **app-alg**.

Let $A \in NP$. We pick ϵ later. It won't matter. By PCP Thm $(\exists d, q \in \mathbb{N})[A \in PCP(q, d \lg n, \epsilon)]$.

If we run the PCP with oracle y we say **PCP**^y.

We use **app-alg** and **the PCP** to obtain $A \in P$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 善臣 - のへで

1. Input *x*.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Input x.
- 2. Form the 3CNF formula ψ_x .

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- **1**. Input *x*.
- 2. Form the 3CNF formula ψ_x .
- 3. Apply the approx to ψ_x .

- 1. Input x.
- 2. Form the 3CNF formula ψ_x .
- 3. Apply the approx to ψ_x .
- 4. We will pick ϵ, δ such that there is a gap between what the approx yields if $x \in A$ and if $x \notin A$. Details on next "few" slides.

- 1. Input x.
- 2. Form the 3CNF formula ψ_x .
- 3. Apply the approx to ψ_x .
- 4. We will pick ϵ, δ such that there is a gap between what the approx yields if $x \in A$ and if $x \notin A$. Details on next "few" slides.

We will then finish the algorithm.

Assume $x \in A$.

Assume $x \in A$.

Then there is an oracle y so that, for all τ , the PCP, with τ , and using y for answers, accepts.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Assume $x \in A$.

Then there is an oracle y so that, for all τ , the PCP, with τ , and using y for answers, accepts.

Formally

$$(\exists y)(\forall \tau \in \{0,1\}^{d \lg n})[\operatorname{PCP}^y(x,\tau) | \mathsf{ACCEPTS}].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Assume $x \in A$.

Then there is an oracle y so that, for all τ , the PCP, with τ , and using y for answers, accepts. Formally

$$(\exists y)(\forall \tau \in \{0,1\}^{d \lg n})[\operatorname{PCP}^{y}(x,\tau) | \mathsf{ACCEPTS}].$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Hence there is a way to satisfy all $n^d C(q)$ clauses of ψ_{τ} simul. So $OPT(\psi_x) = n^d C(q)$.

Assume $x \notin A$.

Assume $x \notin A$.

For all oracles y, for at most ϵ of the τ , the PCP, with τ , and using y for answers, accepts.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume $x \notin A$.

For all oracles y, for at most ϵ of the τ , the PCP, with τ , and using y for answers, accepts. Formally

Assume $x \notin A$.

For all oracles y, for at most ϵ of the τ , the PCP, with τ , and using y for answers, accepts. Formally $(\forall y \in \{0,1\}^q)$

For $\leq \epsilon (2^{d \lg n})$ of the $\tau \in \{0,1\}^{d \lg n} [PCP^{y}(x,\tau)ACCEPTS]$.

ション ふゆ アメビア メロア しょうくしゃ

Let y be the oracle (Truth Assignment) that yields $OPT(\psi_x)$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let y be the oracle (Truth Assignment) that yields $OPT(\psi_x)$

$$\psi_{\mathsf{X}} = \bigwedge \psi_{\tau}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Let y be the oracle (Truth Assignment) that yields $OPT(\psi_x)$

$$\psi_{\mathsf{X}} = \bigwedge \psi_{\tau}$$

Recall Each ψ_x has exactly C(q) clauses.

Let y be the oracle (Truth Assignment) that yields $OPT(\psi_x)$

$$\psi_{\mathsf{X}} = \bigwedge \psi_{\tau}$$

ション ふゆ アメビア メロア しょうくしゃ

Recall Each ψ_x has exactly C(q) clauses. At most ϵ of the τ 's are satisfied. Worst case For $\phi_\tau \notin SAT$, $OPT(\phi_\tau) = C(q) - 1$.

Let y be the oracle (Truth Assignment) that yields $OPT(\psi_x)$

$$\psi_{\mathsf{X}} = \bigwedge \psi_{\tau}$$

Recall Each ψ_x has exactly C(q) clauses. At most ϵ of the τ 's are satisfied. **Worst case** For $\phi_\tau \notin \text{SAT}$, $\text{OPT}(\phi_\tau) = C(q) - 1$. So Number of clauses satisfied is

$$\epsilon n^d C(q) + (1-\epsilon)n^d (C(q)-1) = n^d (\epsilon C(q) + (1-\epsilon)(C(q)-1))$$

$$= n^d(\epsilon C(q) + C(q) - \epsilon C(q) - 1 + \epsilon) = n^d(C(q) - 1 + \epsilon)$$

Apply Approx and See What Happens

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Apply Approx and See What Happens

$$\mathbf{x} \in \mathbf{A} \text{ MAX3SAT}(\psi_{\mathbf{x}}) = n^d C(q)$$
, app-alg $\geq (1 - \delta) n^d C(q)$.
Apply Approx and See What Happens

$$\mathbf{x} \in \mathbf{A}$$
 MAX3SAT $(\psi_x) = n^d C(q)$, app-alg $\geq (1 - \delta) n^d C(q)$.
 $\mathbf{x} \notin \mathbf{A}$ MAX3SAT $(\psi_x) \leq n^d (C(q) - 1 + \epsilon)$, so app-alg
 $\leq n^d (C(q) - 1 + \epsilon)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Apply Approx and See What Happens

$$\mathbf{x} \in \mathbf{A}$$
 MAX3SAT $(\psi_x) = n^d C(q)$, app-alg $\geq (1 - \delta)n^d C(q)$.
 $\mathbf{x} \notin \mathbf{A}$ MAX3SAT $(\psi_x) \leq n^d (C(q) - 1 + \epsilon)$, so app-alg
 $\leq n^d (C(q) - 1 + \epsilon)$.

For Gap Need

$$n^d(C(q)-1+\epsilon) < (1-\delta)n^dC(q)$$
 $\delta < rac{1-\epsilon}{C(q)}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For Gap Need

$$\delta < \frac{1-\epsilon}{C(q)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For Gap Need

$$\delta < \frac{1-\epsilon}{C(q)}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We want to maximize δ .

For Gap Need

$$\delta < \frac{1-\epsilon}{\mathcal{C}(q)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

For Gap Need

$$\delta < \frac{1-\epsilon}{\mathcal{C}(q)}$$

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

If we knew how all of these related we would pick ϵ carefully to maximize $\frac{1-\epsilon}{C(q)}$.

For Gap Need

$$\delta < \frac{1-\epsilon}{\mathcal{C}(q)}$$

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

If we knew how all of these related we would pick ϵ carefully to maximize $\frac{1-\epsilon}{C(q)}$. We don't.

For Gap Need

$$\delta < \frac{1-\epsilon}{C(q)}$$

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

If we knew how all of these related we would pick ϵ carefully to maximize $\frac{1-\epsilon}{C(q)}.$ We don't.

But all we want is there is some δ so we can show MAX3SAT has no $\rm PTAS.$

ション ふぼう メリン メリン しょうくしゃ

For Gap Need

$$\delta < \frac{1-\epsilon}{\mathcal{C}(q)}$$

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

If we knew how all of these related we would pick ϵ carefully to maximize $\frac{1-\epsilon}{C(q)}.$ We don't.

But all we want is there is some δ so we can show MAX3SAT has no $\rm PTAS.$

We pick $\epsilon = \frac{1}{4}$, but still call it ϵ .

For Gap Need

$$\delta < \frac{1-\epsilon}{C(q)}$$

We want to maximize δ .

The smaller ϵ is, the bigger q is, so the bigger C(q) is.

If we knew how all of these related we would pick ϵ carefully to maximize $\frac{1-\epsilon}{C(q)}.$ We don't.

But all we want is there is some δ so we can show MAX3SAT has no $\rm PTAS.$

We pick $\epsilon = \frac{1}{4}$, but still call it ϵ . We pick $\delta = \frac{1-\epsilon}{2C(q)}$.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

ション ふぼう メリン メリン しょうくしゃ

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

ション ふぼう メリン メリン しょうくしゃ

1. Input x.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

- 1. Input x.
- 2. Form the 3CNF formula ψ_x . Let X be the number of clauses.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

- 1. Input x.
- 2. Form the 3CNF formula ψ_x . Let X be the number of clauses.

3. Apply the approx to ψ_x . Call the result Y.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

- 1. Input *x*.
- 2. Form the 3CNF formula ψ_x . Let X be the number of clauses.

- 3. Apply the approx to ψ_x . Call the result Y.
- 4. If $Y \ge (1 \delta)n^d C(q)$ then output YES, $x \in A$.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT. Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

- 1. Input *x*.
- 2. Form the 3CNF formula ψ_x . Let X be the number of clauses.

- 3. Apply the approx to ψ_x . Call the result Y.
- 4. If $Y \ge (1 \delta)n^d C(q)$ then output YES, $x \in A$.
- 5. If $Y \leq n^d (C(q) 1 + \epsilon)$ then output NO, $x \notin A$.

Let $\epsilon = \frac{1}{4}$. Let q, d be such that $A \in PCP(q, d \lg n, \epsilon)$. Let C(q) be as discussed above. Let $\delta = \frac{1-\epsilon}{2C(q)}$. We show there is no $(1 - \delta)$ -approx for MAX3SAT.

Assume, BWOC, that there is such a app-alg. We use the app-alg, and the PCP, to get $A \in P$.

- 1. Input *x*.
- 2. Form the 3CNF formula ψ_x . Let X be the number of clauses.
- 3. Apply the approx to ψ_x . Call the result Y.
- 4. If $Y \ge (1 \delta)n^d C(q)$ then output YES, $x \in A$.
- 5. If $Y \leq n^d (C(q) 1 + \epsilon)$ then output NO, $x \notin A$.

By the commentary in the last few slides, and the choice of δ , exactly one of the inequalities for Y holds.