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Computability and Complexity

Computability The study of what problems can be solved and
which ones cannot be solved. HALT is undecidable. Time is not an
issue.

Computability The study of what problems can be solved in good
time and which ones cannot be solved in good time. We thing
SAT cannot be solved in good time.
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A Brief History of Theory of Complexity

Spoiler Alert The theory of computing made it possible to not just
answer, but to ASK questions that had been around for a while.

Hence the attention to time bounds is a Paradigm Shift: Old
problems can be seen in a new light, and new problems can be
stated.

I will present two threads of history of Theory of Computing.

Warning I am not a historian so some of what I say here may be
exaggerated or wrong. But the general gist is correct.
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Thread One: From Gauss to Gowers

1. In 1805 Gauss invented the Fast Fourier Transform for his own
use and never thought to tell anyone. A statement like FFT
runs in O(n log n) time would probably be very strange for
him. In 1965 FFT was (re)invented by Cooley and Tukey.

2. In 1936 Turing defined The Turing Machine (he didn’t call
it that) as a model of computation. He did not concern
himself with how many steps it took.

3. During WW II Turing helped crack the German Enigma Code.
This requires real computers solving problems quickly. Turing
did not combine this with his other work. (Of course, he was
busy winning WW II at the time.)

Thread continued on next slide.
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Thread One: From Gauss to Rabin (cont)

1. In the 1950’s computability theory was developed. There was
some notion that maybe this could be applied to real
computing, but this notion was somewhere between
aspirational and lip-service.

2. In 1956 Joe Kruskal (Clyde’s Uncle) invented Kruskal’s
Algorithm for Minimal Spanning Tree. The original paper did
not mention time bounds at all, just had some vague allusions
to this method being faster.

3. In the early 1960’s engineers and programmers began looking
informally at how fast an algorithm takes to run.
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A Thread One: From Gauss to Rabin (cont)

1. In 1963 Hartmanis and Stearns define DTIME(T (n))- a
problem such that there is a Turing Machine that will, on
inputs of length n, solve it in ≤ T (n) time.

2. In 1960’s Knuth was a Math Ugrad by day and a programmer
by night. He realized Maybe I can use Math to analyze
these algorithms!

3. In 1965 Cobham defined polynomial time.

4. Matching was known to be (in todays terms) NP ∩ co-NP. In
1965 Jack Edmonds showed (in todays terms) that it was in P
and defined P. He had ideas about NP and (in todays terms)
conjectured P 6= NP. Possibly Whiggist History.
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A Thread One: From Gauss to Rabin (cont)

1. Cook (1971) and Levin (1973) define NP and prove SAT is
NPC. Cook shows 3SAT is NPC. Karp shows 21 problems
are NPC. In the 1970’s thousands of problems from different
fields are shown NPC.

2. In 1978 The Handbook of Math Logic had papers in many
parts of logic.Only one mentioned P vs NP: Rabin’s paper on
decidable theories noted that a theory could be decidable in
theory but not in practice since it may be NP-hard. So the
problem ws not well known in the Logic community and hence
not well known in the math community since Logic would be
its most natural place.

3. In the 2000’s Terry Tao and Timothy Gowers, two Field Medal
winners, have tried to work on P vs NP. So the problem now
has the respect of the Math community. Not sure if their
working on is because the problem has respect or caused the
problem to have respect.
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Thread Two: Eulerian and Hamiltonian Graphs

Def

1. A graph is Eulerian if there is a cycle that hits every edge
once.

2. A graph is Hamiltonian if there is a cycle that hits every
vertex once.



Thread Two: Eulerian and Hamiltonian Graphs
(cont)

1736 Euler solves the Konigsberg bridge problem by proving, in
modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Math Folks Wanted a similar char of HAM graphs but did not
have a notion of algorithms so could not be rigorous.

NPC enabled people to state what they wanted (HAM ∈ P)
and hence it could be shown unlikely (HAM is NPC).
Not an Isolated Example Many other vague open problems in
math can now be stated more rigorously and either solved or
shown hard to solve.
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Why Do We Believe P 6= NP?

1. There are 3 polls of what theorists think of P vs NP. 88% of
those polled said P 6= NP. Some P = NP-ers emailed me
privately that it was a protest vote—They think P 6= NP but
people should be more open minded. Knuth really does think
P = NP but that the NPC are in the hard part of P.

2. The NPC problems have been worked on for a long time
(many before P and NP were defined) and none are in P.

3. Intuition: Coming up with a proof seems harder than
Verifying a proof.

4. P 6= NP has great explanatory power. See next slide.
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Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P 6= NP,
for all ε there is no (1− ε) ln n ×OPTIMAL approx alg for
Set Cover

3. These two proofs have nothing to do with each other yet give
matching upper and lower bounds.

4. There are many other approx problems which (1) we have
been unable to improve, and (2) P 6= NP implies they cannot
be improved.
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NPC Problems on
Boolean Formulas

Exposition by William Gasarch—U of MD



Bounding
(1) Literals Per Clause

(2) Occurrences of a Var

Exposition by William Gasarch—U of MD



Two Types of SAT

1. kSAT-b: Clauses have ≤ k literals, each var occurs ≤ b
times.

2. EU-kSAT-b: Clauses have k literals, each var occurs ≤ b
times.

Caveat Do not allow x and ¬x in same clause.
Caveat Do not allow x and x in same clause.
Occur (x ∨ y) ∧ (¬x ∨ z): x occurs TWICE.
SAT means no bound on number of literals-per-clause.
We will look at all four of these for various values of k , b.
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No Bound on b

1. 1SAT:

P,
φ ∈ 1SAT iff there is no x such that both x and ¬x occur.

2. 2SAT: P. Known result. Sketch: Convert every clause
L1 ∨ L2 into (¬L1 → L2) ∧ (¬L2 → L1). Make a directed
graph with literals as vertices and the → as edges. φ ∈ 2SAT
iff there is no path from an x to a ¬x .

3. 3SAT: NPC by Cook.

The k = 1 and k = 2 cases are of course still in P if you bound b.
Hence we look at k = 3 and bound on b.
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k = 3 and b = 1, 2

3SAT-1:

P. Always satisfiable, just set all literals that appear to T.
EU version would still be in P.

3SAT-2: P? NPC? Work on in Breakout Rooms.
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3SAT, all vars occur ≤ 2. P

1) Input φ in 3CNF, all vars occurs ≤ 2.

2) If a literal is only pos, set T, if only neg, set F. If clause has 1
literal, set true.
These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and
neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
If no NEG-clauses then SAT easily.
IF there is a NEG-clause then set a var in it to F.
(Numb NEG-clauses) + (Numb of clauses) DECREASES.
Eventually satisfy all clauses.
Moral This was a clever trick! To prove P 6= NP would need to
show that no clever trick will get SAT into P. Hard!
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3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it?

By a Reduction
1) Input φ in 3CNF. Want φ′ 3CNF with all vars occurring ≤ 3
times such that φ ∈ SAT iff φ′ ∈ SAT.
2) If a var occurs ≤ 3 times then leave it alone.
3) If a var occurs m ≥ 4 times then
a) Add new vars x1, . . . , xm. Replace ith occurrence of x with xi .
b) Add the clauses x1 → x2, x2 → x3, . . ., xm−1 → xm, xm → x1.
(Formally x1 → x2 is (¬x1 ∨ x2.)
Clearly φ ∈ 3CNF and all variables occur ≤ 3 times.
Clearly φ ∈ SAT iff φ′ ∈ SAT
Moral Going from b ≤ 2 to b ≤ 3 matters!
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occurs ≤ 3 times. P? NPC?
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EU-3SAT-3?

EU-3SAT-3: Every clause has exactly 3 literals. Ever variable
occurs ≤ 3 times. P? NPC?
Go to breakout rooms to work on this.



EU-3SAT-3 is in P

EU-3SAT-3 with b ≤ 3 is in P.

This needs a known Theorem and its Corollary.
For this slide G = (A,B,E ) is a bipartite graph.
A Matching of A into B is a set of disjoint edges so that every
element of A is an endpoint of some edge. View as an injection of
A into B.
X ⊆ A. E (X ) = {y ∈ Y : (∃x ∈ X )[(x , y) ∈ E ]}].

Hall’s Matching Theorem If, for all X ⊆ A, |E (X )| ≥ |X | then
there exists a matching from A to B.

Corollary If there exists k such that (1) for every x ∈ A,
deg(x) ≥ k , and (2) for every y ∈ B, deg(y) ≤ k , then there is a
matching from A to B.

We will use these on the next slide.
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Every EU-3CNF-3 fml is Satisfiable

Let φ be EU-3CNF-3. φ = C1 ∨ · · · ∨ Cm.
Form a bipartite graph:

1. Clauses on the left, variables on the right.

2. Edge from C to x if either x or ¬x is in C .

Every clause has degree 3.

Every variable has degree ≤ 3.
By Corollary there is a matching of C ’s to V ’s. This gives a
satisfying assignment.
Moral The algorithm used a THEOREM in math that perhaps you
did not know. To prove P 6= NP would need to say this can’t
happen. Hard!
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A Variant of SAT

Exposition by William Gasarch—U of MD



1-in-3-SAT

Def 1-in-3-SAT (1-in-3-SAT) is the problem of, given a formula
D1 ∧ · · · ∧ Dm find an assignment that satisfies exactly one
literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion
question.
My Opinion The problem is not natural.
So why are we studying it Discuss.
Its a means to an end We will show natural problems NPC by
using reductions from 1-in-3-SAT. We will do a reduction from a
variant of 1-in-3-SAT.
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Is this a Natural Question? VOTE, though this is an opinion
question.
My Opinion The problem is not natural.
So why are we studying it Discuss.
Its a means to an end We will show natural problems NPC by
using reductions from 1-in-3-SAT. We will do a reduction from a
variant of 1-in-3-SAT.



1-in-3-SAT is NPC

Given φ = C1 ∧ · · · ∧ Cm in 3CNF create the φ′ as follows:

Replace clause (L1 ∨ L2 ∨ L3) with

(¬L1 ∨ a ∨ b) ∧ (b ∨ L2 ∨ c) ∧ (c ∨ d ∨ ¬L3).

where a, b, c , d are new variables.
Leave it to the reader to prove

φ ∈ 3SAT iff φ′ ∈ 1-in-3-SAT.
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Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula
E1 ∧ · · · ∧ Ep where all vars occur positively, is there an assignment
that satisfies exactly one literal-per-clause.

Thm 1-in-3-SAT ≤ mono-1-in-3-SAT
Given 3CNF form φ(x1, . . . , xn) = C1 ∨ · · · ∨ Ck want φ′ such that
φ ∈ 1-in-3-SAT iff φ′ ∈ mono-1-in-3-SAT.
1) New Vars t, f and new clause E = (t ∨ f ∨ f ). Any 1-in-3-SAT
assignment of φ will set t to T and f to F .
2) For each xj have new var x ′j and clause Dj = (f ∨ xj ∨ x ′j ). Any
1-in-3-SAT assignment for φ will set xj , x

′
j to opposites.

3) For each Ci let C ′i be obtained by replacing every xj with x ′j .

φ′ = C ′1 ∧ · · · ∧ C ′k ∧ D1 ∧ · · · ∧ Dn ∧ E .

Leave it to the reader to show φ ∈ 1-in-3-SAT iff
φ′ ∈ mono-1-in-3-SAT.
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A Puzzle we Prove Hard
Using mono-1-in-3-SAT

Exposition by William Gasarch—U of MD



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem!

NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms
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How Did We Solve SEND+MORE=MONEY ?

We initially did some reasoning to cut down the number of poss.

But past a certain point we had to try all possibilities.

Is the general problem NPC?
Spoiler Alert: Yes
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Definition of Cryptarithms Problem

We want to show that Cryptarithms is NPC. We need a definition.

CRYPTARITHM
Input B,m ∈ N. Σ is alphabet of B letters.
x0, . . . , xm−1. Each xi ∈ Σ.
y0, . . . , ym−1. Each yi ∈ Σ.
z0, . . . , zm. Each zi ∈ Σ. The symbol zm is optional.
Question Does there exists injection Σ→ {0, . . . ,B − 1} so that
the arithmetic below is correct in base B?

xm−1 · · · x0
+ ym−1 · · · y0
zm zm−1 · · · z0
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We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC.

Erika- How will we prove this?
We show mono-1-in-3-SAT ≤ CRYPTARITHM. We show an
algorithm that will:
Input φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm where all vars occur positive.
Output An instance J of CRYPTARITHM such that TFAE

1. Exists assignment that satisfies exactly one var per clause.

2. Exists solution to CRYPTARITHM J.

We do the reduction in three parts, so three more slides!
We call the parts gadgets.
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0 and 1

We have 0, 1 ∈ Σ that will live up their name.

We have p, q ∈ Σ that will help 0 maps to 0, 1 maps to 1.
We then make this part of J:

0 p 0
0 p 0

1 q 0

We leave it to the reader to show that this ensures 0 maps to 0
and 1 maps to 1.
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Vars ≡ 0, 1 (mod 4)

For every variable v we have a symbol v ∈ Σ. Our intent is

If v is true then v ≡ 1 (mod 4).
If v is false then v ≡ 0 (mod 4).
The following gadget ensures that v ≡ 0, 1 (mod 4).

0 b c 0 a 0
0 b c 0 a 0

0 v d 0 b 0

Since a + a = b with no carry, b ≡ 0 (mod 2).

Since c + c = d the carry is C ∈ {0, 1}.
Since b + b = v , v = 2b + C , so v ≡ 0, 1 (mod 4).

Note Do this for all vars v , using a different a, b, c for each one.
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Clauses Need to have Exactly One Var True

Clause is (x ∨ y ∨ z).
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b + b = c , so c ≡ 0 (mod 4).

d = c + 1 so d ≡ 1 (mod 4).

x + y = I so x + y ≡ I (mod 4).

I + z = d so x + y + z ≡ 1 (mod 4).

Note For each clause use a different a, b, c , I .

So if J has a solution then φ has a 1-in-3 assignment.
Need if φ has a 1-in-3 assignment then J has sol. Left to reader.
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